Orthogonale Koordinatensysteme:Übersicht

Aus GET A
Wechseln zu: Navigation, Suche

Einführung

Da unterschiedliche Problemstellungen unterschiedlich komplexe Darstellungen erfordern, ist es sinnvoll verschiedene Koordinatensysteme zu verwenden. Möchte man beispielsweise die Kraftwirkungen unterschiedlicher Punktladungen aufeinander berechnen, verwendet man ein Koordinatensystem, um die Punktladungen in relativer Position zueinander angeben zu können. Dafür muss, egal welches Koordinatensystem verwendet wird, immer ein Bezugspunkt fest gewählt werden. An welcher Stelle sich der Bezugspunkt befindet ist willkürlich. Wählt man diesen Bezugspunkt geschickt, vereinfacht sich dadurch jedoch die anschließende Berechnung.


Punkte müssen immer relativ zueinander bestimmt werden können, dafür benötigt man Koordinatensysteme

Mithilfe von Koordinatensystemen, kann ein Punkt P durch einen Vektor beschrieben werden, der von dem Bezugspunkt zu dem Punkt P zeigt. Der Vektor wird dann entweder mit Hilfe der Koordinatendarstellung oder der Komponentendarstellung beschrieben 2x Komponentendarstellung. Die Komponenten werden dabei in der Regel so gewählt, dass sie zueinander orthogonal sind, also senkrecht aufeinander stehen.

An dieser Stelle werden nur orthogonale Koordinatensysteme behandelt, da sie leicht nachvollziehbar und vorstellbar sind und für die in der Vorlesung gezeigten Probleme ausreichen. Bei den drei in den folgenden Abschnitten betrachteten Fällen, nämlich den kartesischen Koordinaten, den Zylinderkoordinaten und den Kugelkoordinaten, handelt es sich um solche orthogonale Koordinatensysteme. Außerdem sind es so genannte Rechtssysteme, deshalb weisen die Einheitsvektoren \vec{\textbf{e}}_\mathrm{1}, \vec{\textbf{e}}_\mathrm{2}, \vec{\textbf{e}}_\mathrm{3} immer in die Richtung wachsender Koordinatenwerte und stehen dabei senkrecht aufeinander. Setzt man die Einheitsvektoren in das Skalarprodukt ein, ergibt sich durch die Orthogonalität automatisch:


\vec{\textbf{e}}_\mathrm{1} \cdot \vec{\textbf{e}}_\mathrm{2} = 
\vec{\textbf{e}}_\mathrm{2} \cdot \vec{\textbf{e}}_\mathrm{3} =
\vec{\textbf{e}}_\mathrm{3} \cdot \vec{\textbf{e}}_\mathrm{1} = 0

Ebenso gilt bei einem Rechtssystem, dass das Vektorprodukt zweier aufeinander folgender Einheitsvektoren den jeweils nächsten Einheitsvektor ergeben muss, dies kann auch durch die [Rechte Hand Regel1] veranschaulicht werden:


\vec{\textbf{e}}_\mathrm{1} \times \vec{\textbf{e}}_\mathrm{2} = \vec{\textbf{e}}_\mathrm{3},
\vec{\textbf{e}}_\mathrm{2} \times \vec{\textbf{e}}_\mathrm{3} = \vec{\textbf{e}}_\mathrm{1},
\vec{\textbf{e}}_\mathrm{3} \times \vec{\textbf{e}}_\mathrm{1} = \vec{\textbf{e}}_\mathrm{2}

Übersicht

Das kartesische Koordinatensystem

Bei dem kartesischen Koordinatensystem sind die Koordinatenachsen geradlinig und orthogonal angeordnet, so dass die Achsen ein Rechtssystem bilden, welches durch die Rechte Handregel1 beschrieben werden kann. Der Schnittpunkt der Achsen wird Koordinatenursprung genannt. Die Einheitsvektoren sind parallel zu den Achsen angeordnet und zeigen immer in Richtung wachsender Koordinatenwerte, daher sind die Einheitsvektoren auch unabhängig von der Position des Punktes im Raum und zeigen immer dieselbe Richtung an.

P= P(x,y,z)
-\infty\leq x\leq\infty
-\infty\leq y\leq\infty
-\infty\leq z\leq\infty
Das Kartesische Koordinatensystem
Zylinderkoordinaten

Bei den Zylinderkoordinaten bleibt die z-Koordinate im Vergleich zu den kartesischen Koordinaten unverändert. In der xy-Ebene werden allerdings die Koordinaten \rho und \varphi verwendet. \rho gibt den Abstand zur z-Achse an, während \varphi den Winkel zwischen der positiven x-Achse und dem Punkt P angibt. Dabei wird \varphi entgegen des Uhrzeigersinns gezählt.

P=P(\rho,\varphi,z)
0\leq \rho\leq\infty
0\leq \varphi\leq 2\pi
-\infty\leq z\leq\infty
Zylinderkoordinaten
Kugelkoordinaten

Bei dem Kugelkoordinatensystem bestimmt r den Abstand zum Ursprung. \varphi wird wie bei den Zylinderkoordinaten zwischen der positiven x-Achse und dem Punkt P angegeben und verläuft dabei entgegen des Uhrzeigersinns. Dabei entsprechen Punkte mit dem selben \varphi-Wert Punkten mit dem selben "Längengrad". Die dritte Koordinate ist der Winkel \vartheta, er wird zwischen der positiven z-Achse und dem Punkt P gemessen. Auch hier gilt, alle Punkte mit dem selben Winkel \vartheta liegen auf dem selben "Breitengrad".

P=P(r,\varphi,\vartheta)
0\leq r\leq\infty
0\leq \varphi\leq 2\pi
0\leq \vartheta\leq\pi
Kugelkoordinaten
Krummlinige orthogonale Koordinatensysteme
P=P(u_1,u_2,u_3)
Krummlinige Koordinaten