Difference between revisions of "Adjugate Formula"

From Robotics
Jump to: navigation, search
Line 37: Line 37:
 
2&-6&-1\\
 
2&-6&-1\\
 
0&1&0\\
 
0&1&0\\
-1&3/1
+
-1&3&1
 
\end{array}\right]</math>
 
\end{array}\right]</math>
  
Line 54: Line 54:
 
=\frac{1}{1}
 
=\frac{1}{1}
 
\left[\begin{array}{ccc}
 
\left[\begin{array}{ccc}
2&-6&-1\\
+
2&0&-1\\
0&1&0\\
+
-6&1&3\\
-1&3&1
+
-1&0&1
 
\end{array}\right]
 
\end{array}\right]
 
=
 
=
 
\left[\begin{array}{ccc}
 
\left[\begin{array}{ccc}
2&-6&-1\\
+
2&0&-1\\
0&1&0\\
+
-6&1&3\\
-1&3&1
+
-1&0&1
 
\end{array}\right]
 
\end{array}\right]
 
</math>
 
</math>

Revision as of 16:28, 22 May 2014

← Back: Gauß-Jordan-Algorithm Overview: Matrix inversion Next: Vector algebra

The adjugate formula defines the inverse of an n-by-n square matrix \mathbf{A} as

\mathbf{A}^{-1}=\frac{1}{\det(\mathbf{A})}\text{adj}(\mathbf{A})

where \text{adj}(\mathbf{A}) is the so called adjugate matrix of \mathbf{A}. The adjugate matrix is the transposed of the cofactor matrix:


\text{adj}(\mathbf{A})=\mathbf{C}(\mathbf{A})^T

And the cofactor matrix \mathbf{C}(\mathbf{A}) is just a matrix where each cell corresponds to the related cofactor:


\mathbf{C}(\mathbf{A})=\left[\begin{array}{cccc}
C_{11}(\mathbf{A}) & C_{12}(\mathbf{A}) & \cdots & C_{1n}(\mathbf{A})\\
C_{21}(\mathbf{A}) & C_{22}(\mathbf{A}) &  & C_{2n}(\mathbf{A})\\
\vdots &  & \ddots & \vdots\\
C_{n1}(\mathbf{A}) & C_{n2}(\mathbf{A}) & \cdots & C_{nn}(\mathbf{A})
\end{array}\right]

So to determine the inverse of an n-by-n square matrix you have to compute the n square cofactors, then transpose the resulting cofactor matrix and divide all the values by the determinant.

Example: inverse of a 3-by-3 matrix using the adjugate formula

The following matrix is already used in examples for the minors and cofactors and for the determinant.


\mathbf{A}_e  = 
\left[\begin{array}{ccc}
1&0&1\\
3&1&0\\
1&0&2
\end{array}\right]

The calculation of two of the cofactors of \mathbf{A}_e has already been described in the example for minors and cofactors. The resulting cofactor matrix of matrix \mathbf{A}_e is


\mathbf{C}(\mathbf{A}_e)=
\left[\begin{array}{ccc}
2&-6&-1\\
0&1&0\\
-1&3&1
\end{array}\right]

The transposed of the cofactor matrix which corresponds to the adjugate matrix then appears as

\mathbf{C}(\mathbf{A}_e)^T=
\left[\begin{array}{ccc}
2&0&-1\\
-6&1&3\\
-1&0&1
\end{array}\right]=\text{adj}(\mathbf{A}_e)

The determinant is computed in the example for a determinant of a matrix and equals 1. So the inverse of \mathbf{A}_e is determined as


\mathbf{A}_e^{-1}=\frac{1}{\det(\mathbf{A}_e)}\text{adj}(\mathbf{A}_e)
=\frac{1}{1}
\left[\begin{array}{ccc}
2&0&-1\\
-6&1&3\\
-1&0&1
\end{array}\right]
=
\left[\begin{array}{ccc}
2&0&-1\\
-6&1&3\\
-1&0&1
\end{array}\right]

Example: inverse of a 4-by-4 matrix using the adjugate formula



\mathbf{A}_e  = 
\left[\begin{array}{cccc}
1 & 2 & 0 & 0\\
3 & 0 & 1 & 1\\
0 & 1 & 0 & 0\\
0 & 0 & 2 & 1
\end{array}\right]

The calculation of two of the cofactors of \mathbf{A}_e has already been described in the example for minors and cofactors. The resulting cofactor matrix of matrix \mathbf{A}_e is


\mathbf{C}(\mathbf{A}_e)=
\left[\begin{array}{cccc}
1 & 0 & 3 & -6\\
0 & 0 & -1 & 2\\
-2 & 1 & -6 & 12\\
0 & 0 & 1 & -1
\end{array}\right]

The transposed of the cofactor matrix which corresponds to the adjugate matrix then appears as

\mathbf{C}(\mathbf{A}_e)^T=
\left[\begin{array}{cccc}
1 & 0 & -2 & 0\\
0 & 0 & 1 & 0\\
3 & -1 & -6 & 1\\
-6 & 2 & 12 & -1
\end{array}\right]=\text{adj}(\mathbf{A}_e)

The determinant is computed in the example for a determinant of a matrix and equals 1. So the inverse of \mathbf{A}_e is determined as


\mathbf{A}_e^{-1}=\frac{1}{\det(\mathbf{A}_e)}\text{adj}(\mathbf{A}_e)
=\frac{1}{1}
\left[\begin{array}{cccc}
1 & 0 & -2 & 0\\
0 & 0 & 1 & 0\\
3 & -1 & -6 & 1\\
-6 & 2 & 12 & -1
\end{array}\right]
=
\left[\begin{array}{cccc}
1 & 0 & -2 & 0\\
0 & 0 & 1 & 0\\
3 & -1 & -6 & 1\\
-6 & 2 & 12 & -1
\end{array}\right]