Minors and cofactors

From Robotics
Jump to: navigation, search
← Back: Determinant of a matrix Overview: Matrices Next: Matrix inversion

The minor M_{ij}(\mathbf{A}) of an n-by-n square matrix \mathbf{A} is the determinant of a smaller square matrix obtained by removing the row i and the column j from \mathbf{A}.

Multiplying the minor with (-1)^{i+j} results in the cofactor C_{ij}(\mathbf{A}):

C_{i,j}(\mathbf{A})=(-1)^{i+j}M_{ij}(\mathbf{A})

Example: Minors and cofactors of a 3-by-3 matrix



\mathbf{A}_3  = 
\left[\begin{array}{ccc}
1&0&1\\
3&1&0\\
1&0&2
\end{array}\right]

The minors M_{22}(\mathbf{A}_3) and M_{31}(\mathbf{A}_3) for example are defined as

M_{22}(\mathbf{A}_3)=
\left|\begin{array}{ccc}
1&\Box&1\\
\Box&\Box&\Box\\
1&\Box&2
\end{array}\right|=
\left|\begin{array}{cc}
1&1\\
1&2
\end{array}\right|=2-1=1


M_{31}(\mathbf{A}_3)=
\left|\begin{array}{ccc}
\Box & 0&1\\
\Box & 1&0\\
\Box & \Box & \Box\\
\end{array}\right|=
\left|\begin{array}{cc}
0&1\\
1&0
\end{array}\right|=0-1=-1

The corresponding cofactors in that case are

C_{22}(\mathbf{A}_3)=(-1)^{2+2}M_{22}(\mathbf{A}_e)=(-1)^4\cdot1=1

C_{31}(\mathbf{A}_3)=(-1)^{3+1}M_{31}(\mathbf{A}_e)=(-1)^4\cdot-1=-1
Example: Minors and cofactors of a 4-by-4 matrix

This example uses the transformation matrix ^R\mathbf{T}_N that is introduced in the robotics script in chapter 3 on page 3-37 and used on the following pages.


^R\mathbf{T}_N  = 
\left[\begin{array}{cccc}
0 & 1 & 0 & 2a\\
0 & 0 & -1 & 0\\
-1 & 0 & 0 & 0\\
0 & 0 & 0 & 1
\end{array}\right]

The minors M_{31}(^R\mathbf{T}_N) and M_{42}(^R\mathbf{T}_N) for example are defined as


M_{31}(^R\mathbf{T}_N)=
\left|\begin{array}{cccc}
\Box & 1 & 0 & 2a\\
\Box & 0 & -1 & 0\\
\Box & \Box & \Box & \Box\\
\Box & 0 & 0 & 1
\end{array}\right|=
\left|\begin{array}{ccc}
1&0&2a\\
0&-1&0\\
0&0&1
\end{array}\right|=-1-0=-1


M_{42}(^R\mathbf{T}_N)=
\left|\begin{array}{cccc}
0&\Box&0&2a\\
0&\Box&-1&0\\
-1&\Box&0&0\\
\Box & \Box & \Box & \Box\\
\end{array}\right|=
\left|\begin{array}{ccc}
0&0&2a\\
0&-1&0\\
-1&0&0
\end{array}\right|=0-2a=-2a



The corresponding cofactors in that case are

C_{31}(^R\mathbf{T}_N)=(-1)^{3+1}M_{31}(^R\mathbf{T}_N)=(-1)^4\cdot(-1)=-1
C_{42}(^R\mathbf{T}_N)=(-1)^{4+2}M_{42}(^R\mathbf{T}_N)=(-1)^6\cdot(-2a)=-2a