Cross product

From Robotics
Jump to: navigation, search
← Back: Dot product Overview: Vector algebra Next: Matrices


There are exercises as selftest for this article.


You can use MATLAB for the content of this article.

Vectoralgebra crossproduct.jpg

The cross product of two vectors is denoted with an \times. The cross product of vector \vec{\mathbf{a}} and vector \vec{\mathbf{b}} results in a new vector

\vec{\mathbf{c}} = \vec{\mathbf{a}} \times \vec{\mathbf{b}}

that is perpendicular to the surface spanned by vectors \vec{\mathbf{a}} and \vec{\mathbf{b}} (see figure). Furthermore the three vectors \vec{\mathbf{a}}, \vec{\mathbf{b}} and \vec{\mathbf{c}} build a rectangular coordinate system based on the right-hand rule. The magnitude of vector \vec{\mathbf{c}} equals the area of the parallelogram spanned by \vec{\mathbf{a}} and \vec{\mathbf{b}} and is calculated as follows:

|\vec{\mathbf{c}}| = a b \sin(\alpha)\ \quad\text{if}\ \vec{\mathbf{c}} = \vec{\mathbf{a}} \times \vec{\mathbf{b}}

In this equation \alpha denotes the angle between the two vectors which ranges from 0 to \pi (see figure above). Furthermore it should be noted that the cross product is exclusively defined for the three-dimensional euclidian vector space. Therefore the following computational relationship holds:

\begin{bmatrix} a_x\\ a_y\\ a_z\end{bmatrix} \times \begin{bmatrix} b_x\\ b_y\\ b_z\end{bmatrix} =
\begin{bmatrix} a_y b_z - a_z b_y\\ a_z b_x - a_x b_z\\ a_x b_y - a_y b_x\end{bmatrix}

Based on the described relationships it can be seen, that the commutative law does not hold for the cross product. Instead, the following holds:

\vec{\mathbf{b}} \times \vec{\mathbf{a}} = -(\vec{\mathbf{a}} \times \vec{\mathbf{b}})

Furthermore there are some special cases that lead to simplifications in technical context:

\vec{\textbf{a}}\times\vec{\mathbf{b}} &= 0 &\text{if}&\ \vec{\textbf{a}} \upuparrows \vec{\textbf{b}}\ \text{and}\ \vec{\textbf{a}} \downarrow\uparrow \vec{\textbf{b}}\ (\text{because} \sin(0) = \sin(\pi) = 0)\\
\vec{\textbf{a}}\times\vec{\mathbf{b}} &= a b \vec{\textbf{e}}_c &\text{if}&\ \vec{\textbf{a}} \perp \vec{\textbf{b}}

Multimedial educational material

Multimedia.png Applet: Cross product of two vectors in the yz-plane


  • Manfred Albach, Grundlagen der Elektrotechnik 1: Erfahrungssätze, Bauelemente, Gleichstromschaltungen, 3. Edition (Pearson Studium, 2011)
  • Kurt Meyberg und Peter Vachenauer, Höhere Mathematik 1: Differential- und Integralrechnung. Vektor- und Matrizenrechnung, 6. Edition (Springer Berlin Heidelberg, 2001)
  • Wolfgang Pavel und Ralf Winkler, Mathematik für Naturwissenschaftler, 1. Edition (Pearson Studium, 2007)