Selftest: Cross product

From Robotics
Jump to: navigation, search
← Previous exercise: Dot product Exercises for chapter Vector algebra | Article: Cross product Next exercise: Introduction to vector algebra

1. Please mark the right transforms:

\vec{\mathbf{a}}\times\vec{\mathbf{b}}= 0   \text{   for   } \vec{\mathbf{a}} \upuparrows\vec{\mathbf{b}}
\vec{\mathbf{a}}\times\vec{\mathbf{b}}= 0 \text{   for   } \vec{\mathbf{a}}\bot\vec{\mathbf{b}}
The magnitude of the cross product results from the following equation: \vec{\mathbf{a}}\times\vec{\mathbf{b}} =\vec{\mathbf{c}}\text{  with}\left|\vec{\mathbf{c}}\right| = ab\sin\alpha. In this case the angle is 90° and so the magnitude is |ab|.
\vec{\mathbf{a}}\times\vec{\mathbf{b}}= \vec{\mathbf{e}}_cab \text{   for   } \vec{\mathbf{a}}\uparrow\downarrow\vec{\mathbf{b}}
The magnitude of the cross product results from the following equation: \vec{\mathbf{a}}\times\vec{\mathbf{b}}=\vec{\mathbf{c}}\text{  with}\left|\vec{\mathbf{c}}\right|= ab\sin\alpha. Here the angle is 180° and the related sine is zero. So the result is 0.

2. Please mark the right transforms: (x,y,z are coordinate axes, a and b are arbitrary)

\vec{\mathbf{b}} \times \vec{\mathbf{a}}=-(\vec{\mathbf{a}}\times \vec{\mathbf{b}})
\vec{\mathbf{y}}\times\vec{\mathbf{x}}=-\vec{\mathbf{z}}
The cross product is commutative.
The first answer implies that the cross product is not commutative. This can easily be proved by the right-hand-rule. Further information: see Cross product

3. Please solve the following exercise:

\begin{pmatrix} 0 \\ 1  \\ 2 \end{pmatrix}\times \begin{pmatrix} 1 \\ 0  \\ 2 \end{pmatrix}=\vec{\mathbf{e}}_x+\vec{\mathbf{e}}_y+\vec{\mathbf{e}}_z
→ To compute the cross product the component representation \vec{\mathbf{a}} \times \vec{\mathbf{b}} =(a_2 b_3 - a_3 b_2) \vec{\mathbf{e}}_1 + (a_3 b_1 - a_1 b_3) \vec{\mathbf{e}}_2 + (a_1 b_2 - a_2 b_1) \vec{\mathbf{e}}_3 is used.

4. Please solve the following exercise:

\begin{pmatrix} -3 \\ 0  \\ 1 \end{pmatrix}\times \begin{pmatrix} -2 \\ -1  \\ 0 \end{pmatrix}=\vec{\mathbf{e}}_x+\vec{\mathbf{e}}_y+\vec{\mathbf{e}}_z
→ To compute the cross product the component representation \vec{\mathbf{a}} \times \vec{\mathbf{b}} =(a_2 b_3 - a_3 b_2) \vec{\mathbf{e}}_1 + (a_3 b_1 - a_1 b_3) \vec{\mathbf{e}}_2 + (a_1 b_2 - a_2 b_1) \vec{\mathbf{e}}_3 is used.

5. Please solve the following exercise:

\begin{pmatrix} 0 \\ 0  \\ 1 \end{pmatrix}\times \begin{pmatrix} 0 \\ 1  \\ 0 \end{pmatrix}=\vec{\mathbf{e}}_x+\vec{\mathbf{e}}_y+\vec{\mathbf{e}}_z
→ To compute the cross product the component representation \vec{\mathbf{a}} \times \vec{\mathbf{b}} =(a_2 b_3 - a_3 b_2) \vec{\mathbf{e}}_1 + (a_3 b_1 - a_1 b_3) \vec{\mathbf{e}}_2 + (a_1 b_2 - a_2 b_1) \vec{\mathbf{e}}_3 is used.

6. The following vectors are given.

Vectoralgebra crossproduct.jpg

Please mark the correct statements sonsidering the the given vectors.

The vector \vec{\mathbf{a}}\times\vec{\mathbf{b}} is perpendicular to the plane that is spanned by the vectors \vec{\mathbf{a}} and \vec{\mathbf{b}}.
The magnitude of the cross product equals the area of the parallelogram that is spanned by the vectors \vec{\mathbf{a}} and \vec{\mathbf{b}}.
The vectors \vec{\mathbf{a}}, \vec{\mathbf{b}} and  \vec{\mathbf{a}}\times\vec{\mathbf{b}} form a rectangular coordinate system. So they are arranged as thumb, middle finger and forefinger of the right hand.

Your score is 0 / 0