Difference between revisions of "Minors and cofactors"

From Robotics
Jump to: navigation, search
Line 1: Line 1:
 
{{Navigation|before=[[Multiplication of matrices]]|overview=[[Matrices]]|next=[[Determinant of a matrix]]}}
 
{{Navigation|before=[[Multiplication of matrices]]|overview=[[Matrices]]|next=[[Determinant of a matrix]]}}
  
The '''minor <math>M_{i,j}(\mathbf{A})</math>''' of an n-by-n square matrix <math>\mathbf{A}</math> is the determinant of a smaller square matrix obtained by removing the row <math>i</math> and the column <math>j</math> from <math>\mathbf{A}</math>.<br/><br/>
+
The '''minor <math>M_{i,j}(\mathbf{A})</math>''' of an n-by-n square matrix <math>\mathbf{A}</math> is the [[Determinant of a matrix|determinant]] of a smaller square matrix obtained by removing the row <math>i</math> and the column <math>j</math> from <math>\mathbf{A}</math>.<br/><br/>
  
 
Multiplying the minor with <math>(-1)^{i+j}</math> results in the '''cofactor <math>C_{i,j}(\mathbf{A})</math>''':<br/><br/>
 
Multiplying the minor with <math>(-1)^{i+j}</math> results in the '''cofactor <math>C_{i,j}(\mathbf{A})</math>''':<br/><br/>

Revision as of 15:46, 22 May 2014

← Back: Multiplication of matrices Overview: Matrices Next: Determinant of a matrix

The minor M_{i,j}(\mathbf{A}) of an n-by-n square matrix \mathbf{A} is the determinant of a smaller square matrix obtained by removing the row i and the column j from \mathbf{A}.

Multiplying the minor with (-1)^{i+j} results in the cofactor C_{i,j}(\mathbf{A}):

C_{i,j}(\mathbf{A})=(-1)^{i+j}M_{i,j}(\mathbf{A})

Example: Minors and cofactors



\mathbf{A}_e  = 
\left[\begin{array}{cccc}
1 & 2 & 0 & 0\\
3 & 0 & 1 & 1\\
0 & 1 & 0 & 0\\
0 & 0 & 2 & 1
\end{array}\right]

The minors M_{1,4}(\mathbf{A}_e) and M_{3,1}(\mathbf{A}_e) for example are defined as

M_{1,4}(\mathbf{A}_e)=
\left|\begin{array}{cccc}
\Box & \Box & \Box & \Box\\
3 & 0 & 1 & \Box\\
0 & 1 & 0 & \Box\\
0 & 0 & 2 & \Box
\end{array}\right|=
\left|\begin{array}{ccc}
3 & 0 & 1\\
0 & 1 & 0\\
0 & 0 & 2
\end{array}\right|=6-0=6

M_{3,1}(\mathbf{A}_e)=
\left|\begin{array}{cccc}
\Box & 2 & 0 & 0\\
\Box & 0 & 1 & 1\\
\Box & \Box & \Box & \Box\\
\Box & 0 & 2 & 1
\end{array}\right|=
\left|\begin{array}{ccc}
2 & 0 & 0\\
0 & 1 & 1\\
0 & 2 & 1
\end{array}\right|=2-4=-2

The corresponding cofactors in that case are

C_{1,4}(\mathbf{A}_e)=(-1)^{1+4}M_{1,4}(\mathbf{A}_e)=(-1)^5\cdot6=-6

C_{3,1}(\mathbf{A}_e)=(-1)^{3+1}M_{3,1}(\mathbf{A}_e)=(-1)^4\cdot-2=-2