Inverse transformation

From Robotics
Revision as of 14:20, 17 June 2014 by Nickchen (talk | contribs)

Jump to: navigation, search
← Back: Combinations of transformations Overview: Transformations Next: ???

Let \mathbf{T} be a general homogeneous transformation matrix. The inverse transformation \mathbf{T}^{-1} corresponds to the transformation that reverts the rotation and translation effected by \mathbf{T}. If a vector is pre-multiplied by \mathbf{T} and subsequently pre-multiplied by \mathbf{T}^{-1}, this results in the original coordinates because \mathbf{T}^{-1}\mathbf{T}=\mathbf{I} and multiplication with the identity matrix does not change anything (see transformations).

The general homogeneous transformation matrix \mathbf{T} for three-dimensional space consists of a 3-by-3 rotation matrix \mathbf{R} and a 3-by-1 translation vector \vec{\mathbf{p}} combined with the last row of the identity matrix:


\mathbf{T}=
\left[\begin{array}{ccc|c}
 &  &  &  \\ 
 & \mathbf{R} &  & \vec{\mathbf{p}}\\
 & & & \\ \hline
0 & 0 & 0 & 1
\end{array}\right]

As stated in the article about homogeneous coordinates, multiplication with \mathbf{T} is equivalent in cartesian coordinates to applying the rotation matrix \mathbf{R} first and then translating the coordinates by \vec{\mathbf{p}}:


\vec{\mathbf{q}}_1=
\mathbf{T} \cdot \vec{\mathbf{q}}_0 \equiv
\mathbf{R}\cdot \vec{\mathbf{q}}_0 + \vec{\mathbf{p}}