Difference between revisions of "Inverse transformation"

From Robotics
Jump to: navigation, search
Line 22: Line 22:
 
The equation above is now solved for <math>\vec{\mathbf{q}}_1</math>:<br/>
 
The equation above is now solved for <math>\vec{\mathbf{q}}_1</math>:<br/>
 
:<math>\begin{align}
 
:<math>\begin{align}
\vec{\mathbf{q}}_1&=\mathbf{R}\cdot \vec{\mathbf{q}}_0 + \vec{\mathbf{p}}\\
+
\vec{\mathbf{q}}_1&=\mathbf{R} \vec{\mathbf{q}}_0 + \vec{\mathbf{p}}\\
\vec{\mathbf{q}}_1-\vec{\mathbf{p}}&=\mathbf{R}\cdot \vec{\mathbf{q}}_0\\
+
\vec{\mathbf{q}}_1-\vec{\mathbf{p}}&=\mathbf{R} \vec{\mathbf{q}}_0\\
\mathbf{R}^{-1}\cdot(\vec{\mathbf{q}}_1-\vec{\mathbf{p}})&=\mathbf{R}^{-1}\cdot\mathbf{R}\cdot \vec{\mathbf{q}}_0\\
+
\mathbf{R}^{-1}(\vec{\mathbf{q}}_1-\vec{\mathbf{p}})&=\mathbf{R}^{-1}\mathbf{R} \vec{\mathbf{q}}_0\\
 
\mathbf{R}^{-1}\vec{\mathbf{q}}_1-\mathbf{R}^{-1}\vec{\mathbf{p}}&=\vec{\mathbf{q}}_0\\
 
\mathbf{R}^{-1}\vec{\mathbf{q}}_1-\mathbf{R}^{-1}\vec{\mathbf{p}}&=\vec{\mathbf{q}}_0\\
 
\end{align}</math>  
 
\end{align}</math>  

Revision as of 16:09, 17 June 2014

← Back: Combinations of transformations Overview: Transformations Next: ???

Let \mathbf{T} be a general homogeneous transformation matrix. The inverse transformation \mathbf{T}^{-1} corresponds to the transformation that reverts the rotation and translation effected by \mathbf{T}. If a vector is pre-multiplied by \mathbf{T} and subsequently pre-multiplied by \mathbf{T}^{-1}, this results in the original coordinates because \mathbf{T}^{-1}\mathbf{T}=\mathbf{I} and multiplication with the identity matrix does not change anything (see transformations).

The general homogeneous transformation matrix \mathbf{T} for three-dimensional space consists of a 3-by-3 rotation matrix \mathbf{R} and a 3-by-1 translation vector \vec{\mathbf{p}} combined with the last row of the identity matrix:


\mathbf{T}=
\left[\begin{array}{ccc|c}
 &  &  &  \\ 
 & \mathbf{R} &  & \vec{\mathbf{p}}\\
 & & & \\ \hline
0 & 0 & 0 & 1
\end{array}\right]

As stated in the article about homogeneous coordinates, multiplication with \mathbf{T} is equivalent in cartesian coordinates to applying the rotation matrix \mathbf{R} first and then translating the coordinates by \vec{\mathbf{p}}:


\vec{\mathbf{q}}_1=
\mathbf{T} \cdot \vec{\mathbf{q}}_0 \equiv
\mathbf{R}\cdot \vec{\mathbf{q}}_0 + \vec{\mathbf{p}}

The equation above is now solved for \vec{\mathbf{q}}_1:

\begin{align}
\vec{\mathbf{q}}_1&=\mathbf{R} \vec{\mathbf{q}}_0 + \vec{\mathbf{p}}\\
\vec{\mathbf{q}}_1-\vec{\mathbf{p}}&=\mathbf{R} \vec{\mathbf{q}}_0\\
\mathbf{R}^{-1}(\vec{\mathbf{q}}_1-\vec{\mathbf{p}})&=\mathbf{R}^{-1}\mathbf{R} \vec{\mathbf{q}}_0\\
\mathbf{R}^{-1}\vec{\mathbf{q}}_1-\mathbf{R}^{-1}\vec{\mathbf{p}}&=\vec{\mathbf{q}}_0\\
\end{align}