Difference between revisions of "Inverse transformation"

From Robotics
Jump to: navigation, search
Line 1: Line 1:
 
{{Navigation|before=[[Combinations of transformations]]|overview=[[Transformations]]|next=[[???]]}}
 
{{Navigation|before=[[Combinations of transformations]]|overview=[[Transformations]]|next=[[???]]}}
  
A general homogeneous transformation matrix <math>\mathbf{T}</math> for three-dimensional space consists of a 3-by-3 rotation matrix <math>\mathbf{R}</math> and a 3-by-1 translation vector <math>\vec{\mathbf{p}}</math> combined with the last row of the identity matrix:<br/>
+
Let <math>\mathbf{T}</math> be a general homogeneous transformation matrix. The inverse transformation <math>\mathbf{T}^{-1}</math> corresponds to the transformation that reverts the rotation and translation effected by <math>\mathbf{T}</math>. If a vector is pre-multiplied by <math>\mathbf{T}</math> and subsequently pre-multiplied by <math>\mathbf{T}^{-1}</math>, this results in the original coordinates because <math>\mathbf{T}^{-1}\mathbf{T}=\mathbf{I}</math> and multiplication with the identity matrix does not change anything (see [[Transformations|transformations]]).
 +
 
 +
The general homogeneous transformation matrix <math>\mathbf{T}</math> for three-dimensional space consists of a 3-by-3 rotation matrix <math>\mathbf{R}</math> and a 3-by-1 translation vector <math>\vec{\mathbf{p}}</math> combined with the last row of the identity matrix:<br/>
 
:<math>
 
:<math>
 
\mathbf{T}=
 
\mathbf{T}=
Line 17: Line 19:
 
\mathbf{R}\cdot \vec{\mathbf{q}}_0 + \vec{\mathbf{p}}
 
\mathbf{R}\cdot \vec{\mathbf{q}}_0 + \vec{\mathbf{p}}
 
</math>  
 
</math>  
The inverse transformation <math>\mathbf{T}^{-1}</math> corresponds to the transformation that reverts the rotation and translation effected by <math>\mathbf{T}</math>. If a vector is pre-multiplied by <math>\mathbf{T}</math> and subsequently pre-multiplied by <math>\mathbf{T}^{-1}</math>, this results in the original coordinates because <math>\mathbf{T}^{-1}\mathbf{T}=\mathbf{I}</math> and multiplication with the identity matrix does not change anything (see [[Transformations|transformations]]).
 
 
Consider the
 
  
 
[[Category:Article]]
 
[[Category:Article]]
 
[[Category:Transformations]]
 
[[Category:Transformations]]

Revision as of 14:20, 17 June 2014

← Back: Combinations of transformations Overview: Transformations Next: ???

Let \mathbf{T} be a general homogeneous transformation matrix. The inverse transformation \mathbf{T}^{-1} corresponds to the transformation that reverts the rotation and translation effected by \mathbf{T}. If a vector is pre-multiplied by \mathbf{T} and subsequently pre-multiplied by \mathbf{T}^{-1}, this results in the original coordinates because \mathbf{T}^{-1}\mathbf{T}=\mathbf{I} and multiplication with the identity matrix does not change anything (see transformations).

The general homogeneous transformation matrix \mathbf{T} for three-dimensional space consists of a 3-by-3 rotation matrix \mathbf{R} and a 3-by-1 translation vector \vec{\mathbf{p}} combined with the last row of the identity matrix:


\mathbf{T}=
\left[\begin{array}{ccc|c}
 &  &  &  \\ 
 & \mathbf{R} &  & \vec{\mathbf{p}}\\
 & & & \\ \hline
0 & 0 & 0 & 1
\end{array}\right]

As stated in the article about homogeneous coordinates, multiplication with \mathbf{T} is equivalent in cartesian coordinates to applying the rotation matrix \mathbf{R} first and then translating the coordinates by \vec{\mathbf{p}}:


\vec{\mathbf{q}}_1=
\mathbf{T} \cdot \vec{\mathbf{q}}_0 \equiv
\mathbf{R}\cdot \vec{\mathbf{q}}_0 + \vec{\mathbf{p}}