Difference between revisions of "Inverse transformation"

From Robotics
Jump to: navigation, search
Line 11: Line 11:
 
\end{array}\right]
 
\end{array}\right]
 
</math>
 
</math>
Multiplication with <math>\mathbf{T}</math> corresponds to applying the rotation matrix <math>\mathbf{R}</math> first and then translating the coordinates by <math>\vec{\mathbf{p}}</math>:<br/>
+
As stated in the article about [[Homogeneous coordinates|homogeneous coordinates]], multiplication with <math>\mathbf{T}</math> is equivalent to applying the rotation matrix <math>\mathbf{R}</math> first and then translating the coordinates by <math>\vec{\mathbf{p}}</math> in cartesian coordinates:<br/>
 
:<math>
 
:<math>
 
\vec{\mathbf{q}}_1=
 
\vec{\mathbf{q}}_1=
\mathbf{T} \cdot \vec{\mathbf{q}}_0 =
+
\mathbf{T} \cdot \vec{\mathbf{q}}_0 \equiv
 
\mathbf{R}\cdot \vec{\mathbf{q}}_0 + \vec{\mathbf{p}}
 
\mathbf{R}\cdot \vec{\mathbf{q}}_0 + \vec{\mathbf{p}}
 
</math>  
 
</math>  

Revision as of 14:10, 17 June 2014

← Back: Combinations of transformations Overview: Transformations Next: ???

A general homogeneous transformation matrix \mathbf{T} for three-dimensional space consists of a 3-by-3 rotation matrix \mathbf{R} and a 3-by-1 translation vector \vec{\mathbf{p}} combined with the last row of the identity matrix:


\mathbf{T}=
\left[\begin{array}{ccc|c}
 &  &  &  \\ 
 & \mathbf{R} &  & \vec{\mathbf{p}}\\
 & & & \\ \hline
0 & 0 & 0 & 1
\end{array}\right]

As stated in the article about homogeneous coordinates, multiplication with \mathbf{T} is equivalent to applying the rotation matrix \mathbf{R} first and then translating the coordinates by \vec{\mathbf{p}} in cartesian coordinates:


\vec{\mathbf{q}}_1=
\mathbf{T} \cdot \vec{\mathbf{q}}_0 \equiv
\mathbf{R}\cdot \vec{\mathbf{q}}_0 + \vec{\mathbf{p}}

The inverse transformation \mathbf{T}^{-1} corresponds to the transformation that reverts the rotation and translation effected by \mathbf{T}. If a vector is pre-multiplied by \mathbf{T} and subsequently pre-multiplied by \mathbf{T}^{-1}, this results in the original coordinates because \mathbf{T}^{-1}\mathbf{T}=\mathbf{I} and multiplication with the identity matrix does not change anything (see transformations).