Difference between revisions of "Inverse transformation"

From Robotics
Jump to: navigation, search
Line 11: Line 11:
 
\end{array}\right]
 
\end{array}\right]
 
</math>
 
</math>
Multiplication with <math>\mathbf{T}</math> corresponds to applying the rotation matrix <math>\mathbf{R}</math> first and then translating the coordinates by <math>\vec{\mathbf{p}}</math>.
+
Multiplication with <math>\mathbf{T}</math> corresponds to applying the rotation matrix <math>\mathbf{R}</math> first and then translating the coordinates by <math>\vec{\mathbf{p}}</math>:<br/>
 +
:<math>
 +
\vec{\mathbf{q}}_1=
 +
\mathbf{T} \cdot \vec{\mathbf{q}}_0 =
 +
\mathbf{R}\cdot \vec{\mathbf{q}}_0 + \vec{\mathbf{p}}
 +
</math>
  
 
[[Category:Article]]
 
[[Category:Article]]
 
[[Category:Transformations]]
 
[[Category:Transformations]]

Revision as of 13:45, 17 June 2014

← Back: Combinations of transformations Overview: Transformations Next: ???

A general homogeneous transformation matrix \mathbf{T} for three-dimensional space consists of a 3-by-3 rotation matrix \mathbf{R} and a 3-by-1 translation vector \vec{\mathbf{p}} combined with the last row of the identity matrix:


\mathbf{T}=
\left[\begin{array}{ccc|c}
 &  &  &  \\ 
 & \mathbf{R} &  & \vec{\mathbf{p}}\\
 & & & \\ \hline
0 & 0 & 0 & 1
\end{array}\right]

Multiplication with \mathbf{T} corresponds to applying the rotation matrix \mathbf{R} first and then translating the coordinates by \vec{\mathbf{p}}:


\vec{\mathbf{q}}_1=
\mathbf{T} \cdot \vec{\mathbf{q}}_0 =
\mathbf{R}\cdot \vec{\mathbf{q}}_0 + \vec{\mathbf{p}}