Difference between revisions of "Dot product"

From Robotics
Jump to: navigation, search
Line 10: Line 10:
 
Regarding the right side of the above equation, the following correlation can be noted: If you project the vector <math>\vec{\mathbf{b}}</math> on the vector <math>\vec{\mathbf{a}}</math>, you get the distance <math>b\cos\alpha</math>. As a consequence the result of the dot product can be seen as the acreage of a rectangle with the side legths <math>a</math> and <math>b\cos\alpha</math>. The projection can also be done contrariwise (projection of vector <math>\vec{\mathbf{a}}</math> on the direction of vector <math>\vec{\mathbf{b}}</math>). So that you get the distance <math>a\cos\alpha</math>. The multiplication of this term with <math>b</math> leads to a rectangle with equivalent acreage but different aspect ratio (see figure).
 
Regarding the right side of the above equation, the following correlation can be noted: If you project the vector <math>\vec{\mathbf{b}}</math> on the vector <math>\vec{\mathbf{a}}</math>, you get the distance <math>b\cos\alpha</math>. As a consequence the result of the dot product can be seen as the acreage of a rectangle with the side legths <math>a</math> and <math>b\cos\alpha</math>. The projection can also be done contrariwise (projection of vector <math>\vec{\mathbf{a}}</math> on the direction of vector <math>\vec{\mathbf{b}}</math>). So that you get the distance <math>a\cos\alpha</math>. The multiplication of this term with <math>b</math> leads to a rectangle with equivalent acreage but different aspect ratio (see figure).
  
Eine weitere Möglichkeit zur Bestimmung des Skalarprodukts ist dadurch gegeben, dass man zunächst die korrespondierenden Komponenten multipliziert und anschließend aufsummiert:
+
Another possibility to compute the dot product is to multiply the corresponding components and sum them up:
 
:<math>
 
:<math>
\vec{\textbf{a}} \cdot \vec{\textbf{b}} = a b\cos\alpha = a_x b_x + a_y b_y + a_z b_z
+
\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a b\cos\alpha = a_x b_x + a_y b_y + a_z b_z
 
</math>
 
</math>
 
Ganz allgemein - zum Beispiel wenn man es nicht mit Vektoren aus dem kartesischen Koordinatensystem zu tun hat - lässt sich das Skalarprodukt wie folgt bestimmen:
 
Ganz allgemein - zum Beispiel wenn man es nicht mit Vektoren aus dem kartesischen Koordinatensystem zu tun hat - lässt sich das Skalarprodukt wie folgt bestimmen:
 
:<math>
 
:<math>
\vec{\textbf{a}} \cdot \vec{\textbf{b}} = a b \cos\alpha = \sum_{i=1}^{n} a_i b_i  
+
\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a b \cos\alpha = \sum_{i=1}^{n} a_i b_i  
 
</math>
 
</math>
 
Anhand der beschriebenen Zusammenhänge zeigt sich, dass das Skalarprodukt dem Kommutativgesetz genügt. Somit gilt:
 
Anhand der beschriebenen Zusammenhänge zeigt sich, dass das Skalarprodukt dem Kommutativgesetz genügt. Somit gilt:
 
:<math>
 
:<math>
\vec{\textbf{a}} \cdot \vec{\textbf{b}} = \vec{\textbf{b}} \cdot \vec{\textbf{a}}
+
\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \vec{\mathbf{b}} \cdot \vec{\mathbf{a}}
 
</math>
 
</math>
 
Weiterhin ergeben sich einige Sonderfälle, die im technischen Kontext häufig zu Vereinfachungen führen:
 
Weiterhin ergeben sich einige Sonderfälle, die im technischen Kontext häufig zu Vereinfachungen führen:
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
\vec{\textbf{a}} \cdot \vec{\textbf{b}} &= ab&
+
\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} &= ab&
 
&\text{wenn}&
 
&\text{wenn}&
\vec{\textbf{a}} & \upuparrows \vec{\textbf{b}}& &(\text{da} \cos(0) = 1)\\
+
\vec{\mathbf{a}} & \upuparrows \vec{\mathbf{b}}& &(\text{da} \cos(0) = 1)\\
\vec{\textbf{a}} \cdot \vec{\textbf{b}} &= 0&
+
\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} &= 0&
 
&\text{wenn}&
 
&\text{wenn}&
\vec{\textbf{a}} &\perp \vec{\textbf{b}}& &(\text{da} \cos(\frac{\pi}{2}) = 0)\\
+
\vec{\mathbf{a}} &\perp \vec{\mathbf{b}}& &(\text{da} \cos(\frac{\pi}{2}) = 0)\\
\vec{\textbf{a}} \cdot \vec{\textbf{b}} &= -ab&
+
\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} &= -ab&
 
&\text{wenn}&
 
&\text{wenn}&
\vec{\textbf{a}} &\downarrow\uparrow \vec{\textbf{b}}& &(\text{da} \cos(\pi) = -1)
+
\vec{\mathbf{a}} &\downarrow\uparrow \vec{\mathbf{b}}& &(\text{da} \cos(\pi) = -1)
 
\end{align}
 
\end{align}
 
</math>
 
</math>
Line 40: Line 40:
 
|Title=Arbeit im elektrischen Feld
 
|Title=Arbeit im elektrischen Feld
 
|Contents=
 
|Contents=
Ein häufiger Anwendungsfall des Skalarprodukts ergibt sich bei dem Begriff der Arbeit. Bewegt man beispielsweise eine Punktladung <math>Q</math> in einem homogenen elektrischen Feld <math>\vec{\textbf{E}}</math> entlang einer geraden Strecke <math>\vec{\textbf{s}}</math> von einem Punkt <math>A</math> zu einem Punkt <math>B</math>, so lässt sich die dabei aufgewendete Arbeit mit Hilfe des Skalarprodukts wie folgt bestimmen:
+
Ein häufiger Anwendungsfall des Skalarprodukts ergibt sich bei dem Begriff der Arbeit. Bewegt man beispielsweise eine Punktladung <math>Q</math> in einem homogenen elektrischen Feld <math>\vec{\mathbf{E}}</math> entlang einer geraden Strecke <math>\vec{\mathbf{s}}</math> von einem Punkt <math>A</math> zu einem Punkt <math>B</math>, so lässt sich die dabei aufgewendete Arbeit mit Hilfe des Skalarprodukts wie folgt bestimmen:
 
:<math>
 
:<math>
W_{AB} = \vec{\textbf{F}} \cdot \vec{\textbf{s}}
+
W_{AB} = \vec{\mathbf{F}} \cdot \vec{\mathbf{s}}
 
</math>
 
</math>
Bei der Verschiebung der Ladung muss die Coulomb-Kraft <math>\vec{\textbf{F}} = Q\vec{\textbf{E}}</math> aufgebracht werden, das heißt in diesem Fall ergibt sich der folgende Zusammenhang:
+
Bei der Verschiebung der Ladung muss die Coulomb-Kraft <math>\vec{\mathbf{F}} = Q\vec{\mathbf{E}}</math> aufgebracht werden, das heißt in diesem Fall ergibt sich der folgende Zusammenhang:
 
:<math>
 
:<math>
W_{AB} = Q\vec{\textbf{E}} \cdot \vec{\textbf{s}} = Q E \cos{\alpha}
+
W_{AB} = Q\vec{\mathbf{E}} \cdot \vec{\mathbf{s}} = Q E \cos{\alpha}
 
</math>
 
</math>
 
Allgemein, also wenn die elektrische Feldstärke nicht homogen und der Weg der Verschiebung von <math>A</math> nach <math>B</math> keine gerade Strecke ist, gilt:
 
Allgemein, also wenn die elektrische Feldstärke nicht homogen und der Weg der Verschiebung von <math>A</math> nach <math>B</math> keine gerade Strecke ist, gilt:
 
:<math>
 
:<math>
W_{AB} = \int_{A}^{B} \vec{\textbf{F}} \cdot \mathrm{d}\vec{\textbf{s}} = Q \int_{A}^{B} \vec{\textbf{E}} \cdot \mathrm{d}\vec{\textbf{s}}
+
W_{AB} = \int_{A}^{B} \vec{\mathbf{F}} \cdot \mathrm{d}\vec{\mathbf{s}} = Q \int_{A}^{B} \vec{\mathbf{E}} \cdot \mathrm{d}\vec{\mathbf{s}}
 
</math>
 
</math>
 
}}
 
}}

Revision as of 13:27, 15 May 2014

← Back: Simple arithmetic operations Overview: Vector algebra Next: Cross product
Vectoralgebra dotproduct.jpg

The dot product of two vectors results in a scalar value and is defined as


\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a \vec{\mathbf{e}}_{a} \cdot b\vec{\mathbf{e}}_{b} = a b \cos \alpha

where \alpha describes the angle between the two vectors which ranges from 0 to \pi (see figure). The dot product is denoted with a simple point between the vectors or without any sign.
Regarding the right side of the above equation, the following correlation can be noted: If you project the vector \vec{\mathbf{b}} on the vector \vec{\mathbf{a}}, you get the distance b\cos\alpha. As a consequence the result of the dot product can be seen as the acreage of a rectangle with the side legths a and b\cos\alpha. The projection can also be done contrariwise (projection of vector \vec{\mathbf{a}} on the direction of vector \vec{\mathbf{b}}). So that you get the distance a\cos\alpha. The multiplication of this term with b leads to a rectangle with equivalent acreage but different aspect ratio (see figure).

Another possibility to compute the dot product is to multiply the corresponding components and sum them up:


\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a b\cos\alpha = a_x b_x + a_y b_y + a_z b_z

Ganz allgemein - zum Beispiel wenn man es nicht mit Vektoren aus dem kartesischen Koordinatensystem zu tun hat - lässt sich das Skalarprodukt wie folgt bestimmen:


\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a b \cos\alpha = \sum_{i=1}^{n} a_i b_i

Anhand der beschriebenen Zusammenhänge zeigt sich, dass das Skalarprodukt dem Kommutativgesetz genügt. Somit gilt:


\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \vec{\mathbf{b}} \cdot \vec{\mathbf{a}}

Weiterhin ergeben sich einige Sonderfälle, die im technischen Kontext häufig zu Vereinfachungen führen:


\begin{align}
\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} &= ab&
&\text{wenn}&
\vec{\mathbf{a}} & \upuparrows \vec{\mathbf{b}}& &(\text{da} \cos(0) = 1)\\
\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} &= 0&
&\text{wenn}&
\vec{\mathbf{a}} &\perp \vec{\mathbf{b}}& &(\text{da} \cos(\frac{\pi}{2}) = 0)\\
\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} &= -ab&
&\text{wenn}&
\vec{\mathbf{a}} &\downarrow\uparrow \vec{\mathbf{b}}& &(\text{da} \cos(\pi) = -1)
\end{align}
Example: Arbeit im elektrischen Feld

Ein häufiger Anwendungsfall des Skalarprodukts ergibt sich bei dem Begriff der Arbeit. Bewegt man beispielsweise eine Punktladung Q in einem homogenen elektrischen Feld \vec{\mathbf{E}} entlang einer geraden Strecke \vec{\mathbf{s}} von einem Punkt A zu einem Punkt B, so lässt sich die dabei aufgewendete Arbeit mit Hilfe des Skalarprodukts wie folgt bestimmen:


W_{AB} = \vec{\mathbf{F}} \cdot \vec{\mathbf{s}}

Bei der Verschiebung der Ladung muss die Coulomb-Kraft \vec{\mathbf{F}} = Q\vec{\mathbf{E}} aufgebracht werden, das heißt in diesem Fall ergibt sich der folgende Zusammenhang:


W_{AB} = Q\vec{\mathbf{E}} \cdot \vec{\mathbf{s}} = Q E \cos{\alpha}

Allgemein, also wenn die elektrische Feldstärke nicht homogen und der Weg der Verschiebung von A nach B keine gerade Strecke ist, gilt:


W_{AB} = \int_{A}^{B} \vec{\mathbf{F}} \cdot \mathrm{d}\vec{\mathbf{s}} = Q \int_{A}^{B} \vec{\mathbf{E}} \cdot \mathrm{d}\vec{\mathbf{s}}


Multimedial educational material

Multimedia.png

http://www.mathresource.iitb.ac.in/linear%20algebra/example7.1/index.html Applet: Skalarprodukt zweier Vektoren (engl.)

http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/dotProduct/dot_product_java_browser.html Applet: Skalarprodukt zweier Vektoren

http://www.mathresource.iitb.ac.in/linear%20algebra/example7.2/index.html Applet: Skalarprodukt zweier Vektoren mit der eingeschlossenen Fläche

http://demonstrations.wolfram.com/DotProduct/ Applet: Skalarprodukt zweier Vektoren (engl./ free CDF-Player erforderlich)

http://www.math.ethz.ch/~lemuren/public/exercise/linalg/LinearCombinationInR2ETHZ.html Applet: Linearkombination im zweidimensionalem Raum

Literature

  • Kurt Meyberg und Peter Vachenauer, Höhere Mathematik 1: Differential- und Integralrechnung. Vektor- und Matrizenrechnung, 6. Edition (Springer Berlin Heidelberg, 2001)
  • Manfred Albach, Grundlagen der Elektrotechnik 1: Erfahrungssätze, Bauelemente, Gleichstromschaltungen, 3. Edition (Pearson Studium, 2011)