Difference between revisions of "Cross product"

From Robotics
Jump to: navigation, search
Line 1: Line 1:
 
{{Navigation|before=[[Dot product]]|overview=[[Vector algebra]]|next=[[Matrices]]}}
 
{{Navigation|before=[[Dot product]]|overview=[[Vector algebra]]|next=[[Matrices]]}}
 
{{Exercise|Vector_algebra/Selftest}}
 
{{Exercise|Vector_algebra/Selftest}}
 +
 
[[File:vectoralgebra_crossproduct.jpg|right|350px]]
 
[[File:vectoralgebra_crossproduct.jpg|right|350px]]
  

Revision as of 13:53, 23 May 2014

← Back: Dot product Overview: Vector algebra Next: Matrices

Review.png

There are exercises as selftest for this article.


Vectoralgebra crossproduct.jpg

The cross product of two vectors is denoted with an \times. The cross product of vector \vec{\mathbf{a}} and vector \vec{\mathbf{b}} results in a new vector

\vec{\mathbf{c}} = \vec{\mathbf{a}} \times \vec{\mathbf{b}}

that is perpendicular to the surface spanned by vectors \vec{\mathbf{a}} and \vec{\mathbf{b}} (see figure). Furthermore the three vectors \vec{\mathbf{a}}, \vec{\mathbf{b}} and \vec{\mathbf{c}} build a rectangular coordinate system based on the right-hand rule. The magnitude of vector \vec{\mathbf{c}} equals the area of the parallelogram spanned by \vec{\mathbf{a}} and \vec{\mathbf{b}} and is calculated as follows:


|\vec{\mathbf{c}}| = a b \sin(\alpha)\ \text{if}\ \vec{\mathbf{c}} = \vec{\mathbf{a}} \times \vec{\mathbf{b}}

In this equation \alpha denotes the angle between the two vectors which ranges from 0 to \pi (see figure above). Furthermore it should be noted that the cross product is exclusively defined for the three-dimensional euclidian vector space. Therefore the following computational relationship holds:


\begin{align}
\begin{bmatrix} a_x\\ a_y\\ a_z\end{bmatrix} \times \begin{bmatrix} b_x\\ b_y\\ b_z\end{bmatrix} =
\begin{bmatrix} a_y b_z - a_z b_y\\ a_z b_x - a_x b_z\\ a_x b_y - a_y b_x\end{bmatrix}
\end{align}

Based on the described relationships it can be seen, that the commutative law does not hold for the cross product. Instead, the following holds:


\vec{\mathbf{b}} \times \vec{\mathbf{a}} = -(\vec{\mathbf{a}} \times \vec{\mathbf{b}})

Furthermore there are some special cases that lead to simplifications in technical context:


\begin{align}
\vec{\textbf{a}}\times\vec{\mathbf{b}} &= 0 &\text{if}&\ \vec{\textbf{a}} \upuparrows \vec{\textbf{b}}\ \text{and}\ \vec{\textbf{a}} \downarrow\uparrow \vec{\textbf{b}}\ (\text{because} \sin(0) = \sin(\pi) = 0)\\
\vec{\textbf{a}}\times\vec{\mathbf{b}} &= a b \vec{\textbf{e}}_c &\text{if}&\ \vec{\textbf{a}} \perp \vec{\textbf{b}}
\end{align}

Multimedial educational material

Multimedia.png

http://www.surendranath.org/Applets/Math/VectorProduct/VP.html Applet: Cross product of two vectors in cartesian and polar coordinates

http://demonstrations.wolfram.com/CrossProductOfVectorsInTheYZPlane/ Applet: Cross product of two vectors in the yz-plane

Literatur

  • Manfred Albach, Grundlagen der Elektrotechnik 1: Erfahrungssätze, Bauelemente, Gleichstromschaltungen, 3. Edition (Pearson Studium, 2011)
  • Kurt Meyberg und Peter Vachenauer, Höhere Mathematik 1: Differential- und Integralrechnung. Vektor- und Matrizenrechnung, 6. Edition (Springer Berlin Heidelberg, 2001)
  • Wolfgang Pavel und Ralf Winkler, Mathematik für Naturwissenschaftler, 1. Edition (Pearson Studium, 2007)