Difference between revisions of "Selftest: Cross product"

From Robotics
Jump to: navigation, search
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{ExerciseNavigation|previous=[[Selftest:Dot product|Dot product]]|article=[[Vector algebra]]|next=[[Selftest:Introduction to vector algebra|Introduction to vector algebra]]}}
+
{{ExerciseNavigation|previous=[[Selftest: Dot product|Dot product]]|chapter=[[Vector algebra]]|article=[[Cross product]]|next=[[Selftest: Introduction to vector algebra|Introduction to vector algebra]]}}
  
<quiz>
+
<quiz display=simple>
 
{'''Please mark the right transforms:''' }
 
{'''Please mark the right transforms:''' }
 
+ <math>\vec{\mathbf{a}}\times\vec{\mathbf{b}}= 0  \text{  for  } \vec{\mathbf{a}} \upuparrows\vec{\mathbf{b}}</math>
 
+ <math>\vec{\mathbf{a}}\times\vec{\mathbf{b}}= 0  \text{  for  } \vec{\mathbf{a}} \upuparrows\vec{\mathbf{b}}</math>
Line 10: Line 10:
 
||The magnitude of the cross product results from the following equation: <math>\vec{\mathbf{a}}\times\vec{\mathbf{b}}=\vec{\mathbf{c}}\text{  with}\left|\vec{\mathbf{c}}\right|= ab\sin\alpha</math>. Here the angle is 180° and the related sine is zero. So the result is 0.
 
||The magnitude of the cross product results from the following equation: <math>\vec{\mathbf{a}}\times\vec{\mathbf{b}}=\vec{\mathbf{c}}\text{  with}\left|\vec{\mathbf{c}}\right|= ab\sin\alpha</math>. Here the angle is 180° and the related sine is zero. So the result is 0.
  
{'''Bitte markieren Sie die korrekten Umformungen, dabei seien x,y,z als Koordinatenachsen zu verstehen, a und b seien beliebig:''' }
+
{'''Please mark the right transforms: (x,y,z are coordinate axes, a and b are arbitrary)''' }
 
+ <math>\vec{\mathbf{b}} \times \vec{\mathbf{a}}=-(\vec{\mathbf{a}}\times \vec{\mathbf{b}})</math>
 
+ <math>\vec{\mathbf{b}} \times \vec{\mathbf{a}}=-(\vec{\mathbf{a}}\times \vec{\mathbf{b}})</math>
 
+ <math>\vec{\mathbf{y}}\times\vec{\mathbf{x}}=-\vec{\mathbf{z}} </math>
 
+ <math>\vec{\mathbf{y}}\times\vec{\mathbf{x}}=-\vec{\mathbf{z}} </math>
-Das Vektorprodukt ist kommutativ.
+
-The cross product is commutative.
||Aus der ersten Antwort wird ersichtlich, dass das Vektorprodukt nicht kommutativ sein kann. Leicht lässt sich das durch die [[Rechte Hand Regel 1]] zeigen: Wenn der Daumen der rechten Hand die x-Achse repräsentiert und der Zeigefinger die y-Achse, zeigt der abgespreizte Mittelfinger in die Richtung der z-Achse. Dreht man die Reihefolge um, also entspricht der Daumen der y-Achse und der Zeigefinger der x-Achse  verläuft der dritte Vektor entgegen der z-Achse. Weitere Erklärung siehe [[Vektorprodukt]]
+
||The first answer implies that the cross product is not commutative. This can easily be proved by the right-hand-rule. Further information: see [[Cross product]]
  
  
{'''Bitte lösen Sie folgende Aufgabe:'''
+
{'''Please solve the following exercise:'''
 
| type="{}" }
 
| type="{}" }
 
<math>\begin{pmatrix} 0 \\ 1  \\ 2 \end{pmatrix}\times \begin{pmatrix} 1 \\ 0  \\ 2 \end{pmatrix}=</math>{ 2 }<math>\vec{\mathbf{e}}_x+</math>{ 2 }<math>\vec{\mathbf{e}}_y+</math>{  -1 }<math>\vec{\mathbf{e}}_z</math>
 
<math>\begin{pmatrix} 0 \\ 1  \\ 2 \end{pmatrix}\times \begin{pmatrix} 1 \\ 0  \\ 2 \end{pmatrix}=</math>{ 2 }<math>\vec{\mathbf{e}}_x+</math>{ 2 }<math>\vec{\mathbf{e}}_y+</math>{  -1 }<math>\vec{\mathbf{e}}_z</math>
||Es gibt zwei Möglichkeiten zur Berechnung des Vektorprodukts. Entweder berechnet man es mit Hilfe der Komponentendarstellung: <math>\vec{\mathbf{a}} \times \vec{\mathbf{b}} =(a_2 b_3 - a_3 b_2) \vec{\mathbf{e}}_1 + (a_3 b_1 - a_1 b_3) \vec{\mathbf{e}}_2 + (a_1 b_2 - a_2 b_1) \vec{\mathbf{e}}_3 </math> oder man nutzt den eingeschlossenen Winkel: <math>\vec{\mathbf{c}} = ab\sin\alpha</math>
+
||To compute the cross product the component representation <math>\vec{\mathbf{a}} \times \vec{\mathbf{b}} =(a_2 b_3 - a_3 b_2) \vec{\mathbf{e}}_1 + (a_3 b_1 - a_1 b_3) \vec{\mathbf{e}}_2 + (a_1 b_2 - a_2 b_1) \vec{\mathbf{e}}_3 </math> is used.
  
{'''Bitte lösen Sie folgende Aufgabe:'''
+
{'''Please solve the following exercise:'''
 
| type="{}" }
 
| type="{}" }
 
<math>\begin{pmatrix} -3 \\ 0  \\ 1 \end{pmatrix}\times \begin{pmatrix} -2 \\ -1  \\ 0 \end{pmatrix}=</math>{ 1  }<math>\vec{\mathbf{e}}_x+</math>{ -2 }<math>\vec{\mathbf{e}}_y+</math>{ 3 }<math>\vec{\mathbf{e}}_z</math>
 
<math>\begin{pmatrix} -3 \\ 0  \\ 1 \end{pmatrix}\times \begin{pmatrix} -2 \\ -1  \\ 0 \end{pmatrix}=</math>{ 1  }<math>\vec{\mathbf{e}}_x+</math>{ -2 }<math>\vec{\mathbf{e}}_y+</math>{ 3 }<math>\vec{\mathbf{e}}_z</math>
||Es gibt zwei Möglichkeiten zur Berechnung des Vektorprodukts. Entweder berechnet man es mit Hilfe der Komponentendarstellung:<math>\vec{\mathbf{a}} \times \vec{\mathbf{b}} =(a_2 b_3 - a_3 b_2) \vec{\mathbf{e}}_1 + (a_3 b_1 - a_1 b_3) \vec{\mathbf{e}}_2 + (a_1 b_2 - a_2 b_1) \vec{\mathbf{e}}_3 </math>oder man nutzt den eingeschlossenen Winkel: <math>\vec{\mathbf{c}} = ab\sin\alpha</math>
+
||To compute the cross product the component representation <math>\vec{\mathbf{a}} \times \vec{\mathbf{b}} =(a_2 b_3 - a_3 b_2) \vec{\mathbf{e}}_1 + (a_3 b_1 - a_1 b_3) \vec{\mathbf{e}}_2 + (a_1 b_2 - a_2 b_1) \vec{\mathbf{e}}_3 </math> is used.
  
{'''Bitte lösen Sie folgende Aufgabe:'''
+
{'''Please solve the following exercise:'''
 
| type="{}" }
 
| type="{}" }
 
<math>\begin{pmatrix} 0 \\ 0  \\ 1 \end{pmatrix}\times \begin{pmatrix} 0 \\ 1  \\ 0 \end{pmatrix}=</math>{ -1  }<math>\vec{\mathbf{e}}_x+</math>{ 0.0 }<math>\vec{\mathbf{e}}_y+</math>{ 0.0 }<math>\vec{\mathbf{e}}_z</math>
 
<math>\begin{pmatrix} 0 \\ 0  \\ 1 \end{pmatrix}\times \begin{pmatrix} 0 \\ 1  \\ 0 \end{pmatrix}=</math>{ -1  }<math>\vec{\mathbf{e}}_x+</math>{ 0.0 }<math>\vec{\mathbf{e}}_y+</math>{ 0.0 }<math>\vec{\mathbf{e}}_z</math>
||Es gibt zwei Möglichkeiten zur Berechnung des Vektorprodukts. Entweder berechnet man es mit Hilfe der Komponentendarstellung:<math>\vec{\mathbf{a}}\times \vec{\mathbf{b}} =(a_2 b_3 - a_3 b_2) \vec{\mathbf{e}}_1 + (a_3 b_1 - a_1 b_3) \vec{\mathbf{e}}_2 + (a_1 b_2 - a_2 b_1) \vec{\mathbf{e}}_3 </math>oder man nutzt den eingeschlossenen Winkel: <math>\vec{\mathbf{c}} = ab\sin\alpha</math>
+
||To compute the cross product the component representation <math>\vec{\mathbf{a}} \times \vec{\mathbf{b}} =(a_2 b_3 - a_3 b_2) \vec{\mathbf{e}}_1 + (a_3 b_1 - a_1 b_3) \vec{\mathbf{e}}_2 + (a_1 b_2 - a_2 b_1) \vec{\mathbf{e}}_3 </math> is used.
  
  
{ '''Gegeben sind folgende Vektoren.'''
+
{ '''The following vectors are given.'''
  
[[Image:Vektorrechnung_Vektorprodukt.jpg|300px|<caption>Vektorprodukt</caption>]]
+
[[File:Vectoralgebra_crossproduct.jpg‎|300px]]
  
Bitte markieren Sie alle richtigen Aussagen mit Berücksichtigung der gegebenen Vektoren.
+
Please mark the correct statements sonsidering the the given vectors.
 
}
 
}
+ Der Vektor <math>\vec{\mathbf{a}}\times\vec{\mathbf{b}}</math> steht senkrecht auf der Fläche, die von den Vektoren <math>\vec{\mathbf{a}}</math> und <math>\vec{\mathbf{b}}</math> aufgespannt wird.
+
+ The vector <math>\vec{\mathbf{a}}\times\vec{\mathbf{b}}</math> is perpendicular to the plane that is spanned by the vectors <math>\vec{\mathbf{a}}</math> and <math>\vec{\mathbf{b}}</math>.
- Der Betrag des vektoriellen Produkts ist gleich der Fläche des Parallelogramms, das von <math> \vec{\mathbf{a}}\times\vec{\mathbf{b}}</math> aufgespannt wird.
+
+ The magnitude of the cross product equals the area of the parallelogram that is spanned by the vectors <math>\vec{\mathbf{a}}</math> and <math>\vec{\mathbf{b}}</math>.
||Da die Formel des Vektorprodukts nicht nur das vektorielle Produkt, sondern auch den Sinus des eingeschlossenen Winkels enthält, ist diese Antwort falsch. Weitere Erklärung siehe [[Rechte Hand Regel 1]]
+
+ The vectors <math>\vec{\mathbf{a}}</math>, <math>\vec{\mathbf{b}}</math> and <math> \vec{\mathbf{a}}\times\vec{\mathbf{b}}</math> form a rectangular coordinate system. So they are arranged as thumb, middle finger and forefinger of the right hand.
+ Die Vektoren <math>\vec{\mathbf{a}}</math>, <math>\vec{\mathbf{b}}</math> und <math> \vec{\mathbf{a}}\times\vec{\mathbf{b}}</math> bilden ein Rechtssystem, das heißt, sie sind angeordnet wie Daumen, Mittelfinger und Zeigefinger der rechten Hand.
 
 
</quiz>
 
</quiz>
  
 
[[Category:Selftest]]
 
[[Category:Selftest]]
 
[[Category:Vectors]]
 
[[Category:Vectors]]

Latest revision as of 10:18, 25 September 2014

← Previous exercise: Dot product Exercises for chapter Vector algebra | Article: Cross product Next exercise: Introduction to vector algebra

1. Please mark the right transforms:

\vec{\mathbf{a}}\times\vec{\mathbf{b}}= 0   \text{   for   } \vec{\mathbf{a}} \upuparrows\vec{\mathbf{b}}
\vec{\mathbf{a}}\times\vec{\mathbf{b}}= 0 \text{   for   } \vec{\mathbf{a}}\bot\vec{\mathbf{b}}
The magnitude of the cross product results from the following equation: \vec{\mathbf{a}}\times\vec{\mathbf{b}} =\vec{\mathbf{c}}\text{  with}\left|\vec{\mathbf{c}}\right| = ab\sin\alpha. In this case the angle is 90° and so the magnitude is |ab|.
\vec{\mathbf{a}}\times\vec{\mathbf{b}}= \vec{\mathbf{e}}_cab \text{   for   } \vec{\mathbf{a}}\uparrow\downarrow\vec{\mathbf{b}}
The magnitude of the cross product results from the following equation: \vec{\mathbf{a}}\times\vec{\mathbf{b}}=\vec{\mathbf{c}}\text{  with}\left|\vec{\mathbf{c}}\right|= ab\sin\alpha. Here the angle is 180° and the related sine is zero. So the result is 0.

2. Please mark the right transforms: (x,y,z are coordinate axes, a and b are arbitrary)

\vec{\mathbf{b}} \times \vec{\mathbf{a}}=-(\vec{\mathbf{a}}\times \vec{\mathbf{b}})
\vec{\mathbf{y}}\times\vec{\mathbf{x}}=-\vec{\mathbf{z}}
The cross product is commutative.
The first answer implies that the cross product is not commutative. This can easily be proved by the right-hand-rule. Further information: see Cross product

3. Please solve the following exercise:

\begin{pmatrix} 0 \\ 1  \\ 2 \end{pmatrix}\times \begin{pmatrix} 1 \\ 0  \\ 2 \end{pmatrix}=\vec{\mathbf{e}}_x+\vec{\mathbf{e}}_y+\vec{\mathbf{e}}_z
→ To compute the cross product the component representation \vec{\mathbf{a}} \times \vec{\mathbf{b}} =(a_2 b_3 - a_3 b_2) \vec{\mathbf{e}}_1 + (a_3 b_1 - a_1 b_3) \vec{\mathbf{e}}_2 + (a_1 b_2 - a_2 b_1) \vec{\mathbf{e}}_3 is used.

4. Please solve the following exercise:

\begin{pmatrix} -3 \\ 0  \\ 1 \end{pmatrix}\times \begin{pmatrix} -2 \\ -1  \\ 0 \end{pmatrix}=\vec{\mathbf{e}}_x+\vec{\mathbf{e}}_y+\vec{\mathbf{e}}_z
→ To compute the cross product the component representation \vec{\mathbf{a}} \times \vec{\mathbf{b}} =(a_2 b_3 - a_3 b_2) \vec{\mathbf{e}}_1 + (a_3 b_1 - a_1 b_3) \vec{\mathbf{e}}_2 + (a_1 b_2 - a_2 b_1) \vec{\mathbf{e}}_3 is used.

5. Please solve the following exercise:

\begin{pmatrix} 0 \\ 0  \\ 1 \end{pmatrix}\times \begin{pmatrix} 0 \\ 1  \\ 0 \end{pmatrix}=\vec{\mathbf{e}}_x+\vec{\mathbf{e}}_y+\vec{\mathbf{e}}_z
→ To compute the cross product the component representation \vec{\mathbf{a}} \times \vec{\mathbf{b}} =(a_2 b_3 - a_3 b_2) \vec{\mathbf{e}}_1 + (a_3 b_1 - a_1 b_3) \vec{\mathbf{e}}_2 + (a_1 b_2 - a_2 b_1) \vec{\mathbf{e}}_3 is used.

6. The following vectors are given.

Vectoralgebra crossproduct.jpg

Please mark the correct statements sonsidering the the given vectors.

The vector \vec{\mathbf{a}}\times\vec{\mathbf{b}} is perpendicular to the plane that is spanned by the vectors \vec{\mathbf{a}} and \vec{\mathbf{b}}.
The magnitude of the cross product equals the area of the parallelogram that is spanned by the vectors \vec{\mathbf{a}} and \vec{\mathbf{b}}.
The vectors \vec{\mathbf{a}}, \vec{\mathbf{b}} and  \vec{\mathbf{a}}\times\vec{\mathbf{b}} form a rectangular coordinate system. So they are arranged as thumb, middle finger and forefinger of the right hand.

Your score is 0 / 0