Difference between revisions of "Minors and cofactors"

From Robotics
Jump to: navigation, search
Line 49: Line 49:
 
|Title=Minors and cofactors of a 4-by-4 matrix
 
|Title=Minors and cofactors of a 4-by-4 matrix
 
|Contents=
 
|Contents=
 +
 
<br/><math>
 
<br/><math>
 
\mathbf{A}_e  =  
 
\mathbf{A}_e  =  

Revision as of 16:00, 22 May 2014

← Back: Determinant of a matrix Overview: Matrices Next: Matrix inversion

The minor M_{ij}(\mathbf{A}) of an n-by-n square matrix \mathbf{A} is the determinant of a smaller square matrix obtained by removing the row i and the column j from \mathbf{A}.

Multiplying the minor with (-1)^{i+j} results in the cofactor C_{i,j}(\mathbf{A}):

C_{i,j}(\mathbf{A})=(-1)^{i+j}M_{ij}(\mathbf{A})

Example: Minors and cofactors of a 3-by-3 matrix



\mathbf{A}_e  = 
\left[\begin{array}{ccc}
1&0&1\\
3&1&0\\
1&0&2
\end{array}\right]

The minors M_{22}(\mathbf{A}_e) and M_{31}(\mathbf{A}_e) for example are defined as

M_{22}(\mathbf{A}_e)=
\left|\begin{array}{ccc}
1&\Box&1\\
\Box&\Box&\Box\\
1&\Box&2
\end{array}\right|=
\left|\begin{array}{cc}
1&1\\
1&2
\end{array}\right|=2-1=1


M_{31}(\mathbf{A}_e)=
\left|\begin{array}{ccc}
\Box & 0&1\\
\Box & 1&0\\
\Box & \Box & \Box\\
\end{array}\right|=
\left|\begin{array}{cc}
0&1\\
1&0
\end{array}\right|=0-1=-1

The corresponding cofactors in that case are

C_{22}(\mathbf{A}_e)=(-1)^{2+2}M_{22}(\mathbf{A}_e)=(-1)^4\cdot1=1

C_{31}(\mathbf{A}_e)=(-1)^{3+1}M_{31}(\mathbf{A}_e)=(-1)^4\cdot-1=-1
Example: Minors and cofactors of a 4-by-4 matrix



\mathbf{A}_e  = 
\left[\begin{array}{cccc}
1 & 2 & 0 & 0\\
3 & 0 & 1 & 1\\
0 & 1 & 0 & 0\\
0 & 0 & 2 & 1
\end{array}\right]

The minors M_{14}(\mathbf{A}_e) and M_{31}(\mathbf{A}_e) for example are defined as

M_{14}(\mathbf{A}_e)=
\left|\begin{array}{cccc}
\Box & \Box & \Box & \Box\\
3 & 0 & 1 & \Box\\
0 & 1 & 0 & \Box\\
0 & 0 & 2 & \Box
\end{array}\right|=
\left|\begin{array}{ccc}
3 & 0 & 1\\
0 & 1 & 0\\
0 & 0 & 2
\end{array}\right|=6-0=6

M_{31}(\mathbf{A}_e)=
\left|\begin{array}{cccc}
\Box & 2 & 0 & 0\\
\Box & 0 & 1 & 1\\
\Box & \Box & \Box & \Box\\
\Box & 0 & 2 & 1
\end{array}\right|=
\left|\begin{array}{ccc}
2 & 0 & 0\\
0 & 1 & 1\\
0 & 2 & 1
\end{array}\right|=2-4=-2

The corresponding cofactors in that case are

C_{14}(\mathbf{A}_e)=(-1)^{1+4}M_{14}(\mathbf{A}_e)=(-1)^5\cdot6=-6

C_{31}(\mathbf{A}_e)=(-1)^{3+1}M_{31}(\mathbf{A}_e)=(-1)^4\cdot-2=-2