Difference between revisions of "Adjugate Formula"

From Robotics
Jump to: navigation, search
Line 19: Line 19:
 
|Title=inverse of a 4-by-4 matrix using the adjugate formula
 
|Title=inverse of a 4-by-4 matrix using the adjugate formula
 
|Contents=
 
|Contents=
<br/><math>
+
<br/>
 +
<math>
 
\mathbf{A}_e  =  
 
\mathbf{A}_e  =  
 
\left[\begin{array}{cccc}
 
\left[\begin{array}{cccc}
Line 28: Line 29:
 
\end{array}\right]</math>
 
\end{array}\right]</math>
 
<br/><br/>
 
<br/><br/>
The calculation of two of the cofactors of <math>\mathbf{A}_e</math> has already been described in the example for [[Minors_and_cofactors|minors and cofactors]] and the determinant is computed [[Determinant_of_a_4-by-4_matrix|here]].<br/><br/>
+
The calculation of two of the cofactors of <math>\mathbf{A}_e</math> has already been described in the example for [[Minors_and_cofactors|minors and cofactors]]. The resulting cofactor matrix of matrix <math>\mathbf{A}_e</math> is<br/><br/>
<math>\begin{align}
+
<math>
\mathbf{C}(\mathbf{A}_e)&=
+
\mathbf{C}(\mathbf{A}_e)=
 
\left[\begin{array}{cccc}
 
\left[\begin{array}{cccc}
 
1 & 0 & 3 & -6\\
 
1 & 0 & 3 & -6\\
Line 36: Line 37:
 
-2 & 1 & -6 & 12\\
 
-2 & 1 & -6 & 12\\
 
0 & 0 & 1 & -1
 
0 & 0 & 1 & -1
\end{array}\right]\\ \\
+
\end{array}\right]</math>
\mathbf{C}(\mathbf{A}_e)^T&=
+
<br/><br/>
 +
The transposed of the cofactor matrix then appears as
 +
<br/><br/><math>\mathbf{C}(\mathbf{A}_e)^T=
 
\left[\begin{array}{cccc}
 
\left[\begin{array}{cccc}
 
1 & 0 & -2 & 0\\
 
1 & 0 & -2 & 0\\
Line 43: Line 46:
 
3 & -1 & -6 & 1\\
 
3 & -1 & -6 & 1\\
 
-6 & 2 & 12 & -1
 
-6 & 2 & 12 & -1
\end{array}\right]=\text{adj}(\mathbf{A}_e)\\ \\
+
\end{array}\right]=\text{adj}(\mathbf{A}_e)</math><br/><br/>
\mathbf{A}_e^{-1}&=\frac{1}{\det(\mathbf{A}_e)}\text{adj}(\mathbf{A}_e)
+
The determinant is computed in the example for a [[Determinant_of_a_4-by-4_matrix|determinant of a 4-by-4 matrix]] and equals 1.
 +
<math>
 +
\mathbf{A}_e^{-1}=\frac{1}{\det(\mathbf{A}_e)}\text{adj}(\mathbf{A}_e)
 
=\frac{1}{1}
 
=\frac{1}{1}
 
\left[\begin{array}{cccc}
 
\left[\begin{array}{cccc}
Line 59: Line 64:
 
-6 & 2 & 12 & -1
 
-6 & 2 & 12 & -1
 
\end{array}\right]
 
\end{array}\right]
\end{align}</math>
+
</math>
 +
 
 
}}
 
}}

Revision as of 16:18, 9 May 2014

The adjugate formula defines the inverse of an n-by-n square matrix \mathbf{A} as

\mathbf{A}^{-1}=\frac{1}{\det(\mathbf{A})}\text{adj}(\mathbf{A})

where \text{adj}(\mathbf{A}) is the so called adjugate matrix of \mathbf{A}. The adjugate matrix is the transposed of the cofactor matrix:


\text{adj}(\mathbf{A})=\mathbf{C}(\mathbf{A})^T

And the cofactor matrix \mathbf{C}(\mathbf{A}) is just a matrix where each cell corresponds to the related cofactor:


\mathbf{C}(\mathbf{A})=\left[\begin{array}{cccc}
C_{1,1}(\mathbf{A}) & C_{1,2}(\mathbf{A}) & \cdots & C_{1,n}(\mathbf{A})\\
C_{2,1}(\mathbf{A}) & C_{2,2}(\mathbf{A}) &  & C_{2,n}(\mathbf{A})\\
\vdots &  & \ddots & \vdots\\
C_{n,1}(\mathbf{A}) & C_{n,2}(\mathbf{A}) & \cdots & C_{n,n}(\mathbf{A})
\end{array}\right]

So to determine the inverse of an n-by-n square matrix you have to compute the n square cofactors, then transpose the resulting cofactor matrix and divide all the values by the determinant.

Example: inverse of a 4-by-4 matrix using the adjugate formula



\mathbf{A}_e  = 
\left[\begin{array}{cccc}
1 & 2 & 0 & 0\\
3 & 0 & 1 & 1\\
0 & 1 & 0 & 0\\
0 & 0 & 2 & 1
\end{array}\right]

The calculation of two of the cofactors of \mathbf{A}_e has already been described in the example for minors and cofactors. The resulting cofactor matrix of matrix \mathbf{A}_e is


\mathbf{C}(\mathbf{A}_e)=
\left[\begin{array}{cccc}
1 & 0 & 3 & -6\\
0 & 0 & -1 & 2\\
-2 & 1 & -6 & 12\\
0 & 0 & 1 & -1
\end{array}\right]

The transposed of the cofactor matrix then appears as

\mathbf{C}(\mathbf{A}_e)^T=
\left[\begin{array}{cccc}
1 & 0 & -2 & 0\\
0 & 0 & 1 & 0\\
3 & -1 & -6 & 1\\
-6 & 2 & 12 & -1
\end{array}\right]=\text{adj}(\mathbf{A}_e)

The determinant is computed in the example for a determinant of a 4-by-4 matrix and equals 1. 
\mathbf{A}_e^{-1}=\frac{1}{\det(\mathbf{A}_e)}\text{adj}(\mathbf{A}_e)
=\frac{1}{1}
\left[\begin{array}{cccc}
1 & 0 & -2 & 0\\
0 & 0 & 1 & 0\\
3 & -1 & -6 & 1\\
-6 & 2 & 12 & -1
\end{array}\right]
=
\left[\begin{array}{cccc}
1 & 0 & -2 & 0\\
0 & 0 & 1 & 0\\
3 & -1 & -6 & 1\\
-6 & 2 & 12 & -1
\end{array}\right]