Difference between revisions of "Adjugate Formula"

From Robotics
Jump to: navigation, search
Line 15: Line 15:
 
</math><br/><br/>
 
</math><br/><br/>
 
So to determine the inverse of an n-by-n square matrix you have to compute the n square cofactors, then transpose the resulting cofactor matrix and divide all the values by the determinant.<br/><br/>
 
So to determine the inverse of an n-by-n square matrix you have to compute the n square cofactors, then transpose the resulting cofactor matrix and divide all the values by the determinant.<br/><br/>
 
+
 
  <math>\begin{align}
+
{{Example
 +
|Title=inverse of a 4-by-4 matrix
 +
|Contents=
 +
<br/><math>\begin{align}
 +
\mathbf{A}_e  &=
 +
\left[\begin{array}{cccc}
 +
1 & 2 & 0 & 0\\
 +
3 & 0 & 1 & 1\\
 +
0 & 1 & 0 & 0\\
 +
0 & 0 & 2 & 1
 +
\end{array}\right]\\ \\
 
\mathbf{C}(\mathbf{A}_e)&=
 
\mathbf{C}(\mathbf{A}_e)&=
 
\left[\begin{array}{cccc}
 
\left[\begin{array}{cccc}
Line 47: Line 57:
 
\end{array}\right]
 
\end{array}\right]
 
\end{align}</math>
 
\end{align}</math>
 +
}}

Revision as of 16:01, 9 May 2014

The adjugate formula defines the inverse of an n-by-n square matrix \mathbf{A} as

\mathbf{A}^{-1}=\frac{1}{\det(\mathbf{A})}\text{adj}(\mathbf{A})

where \text{adj}(\mathbf{A}) is the so called adjugate matrix of \mathbf{A}. The adjugate matrix is the transposed of the cofactor matrix:


\text{adj}(\mathbf{A})=\mathbf{C}(\mathbf{A})^T

And the cofactor matrix \mathbf{C}(\mathbf{A}) is just a matrix where each cell corresponds to the related cofactor:


\mathbf{C}(\mathbf{A})=\left[\begin{array}{cccc}
C_{1,1}(\mathbf{A}) & C_{1,2}(\mathbf{A}) & \cdots & C_{1,n}(\mathbf{A})\\
C_{2,1}(\mathbf{A}) & C_{2,2}(\mathbf{A}) &  & C_{2,n}(\mathbf{A})\\
\vdots &  & \ddots & \vdots\\
C_{n,1}(\mathbf{A}) & C_{n,2}(\mathbf{A}) & \cdots & C_{n,n}(\mathbf{A})
\end{array}\right]

So to determine the inverse of an n-by-n square matrix you have to compute the n square cofactors, then transpose the resulting cofactor matrix and divide all the values by the determinant.

Example: inverse of a 4-by-4 matrix


\begin{align}
\mathbf{A}_e  &= 
\left[\begin{array}{cccc}
1 & 2 & 0 & 0\\
3 & 0 & 1 & 1\\
0 & 1 & 0 & 0\\
0 & 0 & 2 & 1
\end{array}\right]\\ \\
\mathbf{C}(\mathbf{A}_e)&=
\left[\begin{array}{cccc}
1 & 0 & 3 & -6\\
0 & 0 & -1 & 2\\
-2 & 1 & -6 & 12\\
0 & 0 & 1 & -1
\end{array}\right]\\ \\
\mathbf{C}(\mathbf{A}_e)^T&=
\left[\begin{array}{cccc}
1 & 0 & -2 & 0\\
0 & 0 & 1 & 0\\
3 & -1 & -6 & 1\\
-6 & 2 & 12 & -1
\end{array}\right]=\text{adj}(\mathbf{A}_e)\\ \\
\mathbf{A}_e^{-1}&=\frac{1}{\det(\mathbf{A}_e)}\text{adj}(\mathbf{A}_e)
=\frac{1}{1}
\left[\begin{array}{cccc}
1 & 0 & -2 & 0\\
0 & 0 & 1 & 0\\
3 & -1 & -6 & 1\\
-6 & 2 & 12 & -1
\end{array}\right]
=
\left[\begin{array}{cccc}
1 & 0 & -2 & 0\\
0 & 0 & 1 & 0\\
3 & -1 & -6 & 1\\
-6 & 2 & 12 & -1
\end{array}\right]
\end{align}