Difference between revisions of "Selftest: Dot product"

From Robotics
Jump to: navigation, search
Line 10: Line 10:
 
- 1,5
 
- 1,5
 
+ 15
 
+ 15
||The result of the dot product is a ''scalar'' value. In this case the easiest way to compute the dot product is using the angle between the two vectors:<math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} =  a b \cos \alpha</math>. The angle is 0° and so the cosine is 1. Further information: see [[Dot product]].
+
||The result of the dot product is a ''scalar'' value. In this case the easiest way to compute the dot product is using the angle between the two vectors: <math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} =  a b \cos \alpha</math>. The angle is 0° and so the cosine is 1. Further information: see [[Dot product]].
  
 
{'''What is the result of dor product of <math>\vec{\mathbf{a}}</math> and <math>\vec{\mathbf{b}}</math>?'''
 
{'''What is the result of dor product of <math>\vec{\mathbf{a}}</math> and <math>\vec{\mathbf{b}}</math>?'''
Line 19: Line 19:
 
- 15
 
- 15
 
+  0
 
+  0
||The result of the dot product is a ''scalar'' value. In this case the easiest way to compute the dot product is using the angle between the two vectors:<math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} =  a b \cos \alpha</math>. The angle is 90° and so the cosine is 0. Further information: see [[Dot product]].
+
||The result of the dot product is a ''scalar'' value. In this case the easiest way to compute the dot product is using the angle between the two vectors: <math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} =  a b \cos \alpha</math>. The angle is 90° and so the cosine is 0. Further information: see [[Dot product]].
  
  
Line 31: Line 31:
 
+ -15
 
+ -15
 
- 15
 
- 15
||The result of the dot product is a ''scalar'' value. In this case the easiest way to compute the dot product is using the angle between the two vectors:<math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} =  a b \cos \alpha</math>. The angle is 180° and so the cosine is -1. Further information: see [[Dot product]].
+
||The result of the dot product is a ''scalar'' value. In this case the easiest way to compute the dot product is using the angle between the two vectors: <math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} =  a b \cos \alpha</math>. The angle is 180° and so the cosine is -1. Further information: see [[Dot product]].
  
  
Line 38: Line 38:
  
  
{'''Bitte lösen Sie folgende Aufgabe:'''
+
{'''Please solve the following exercise:'''
 
| type="{}" }
 
| type="{}" }
 
<math>\begin{pmatrix} 2 \\ 3  \\ 5 \end{pmatrix}\cdot \begin{pmatrix} -3 \\ 6  \\ 4 \end{pmatrix}=</math>{ 32 }
 
<math>\begin{pmatrix} 2 \\ 3  \\ 5 \end{pmatrix}\cdot \begin{pmatrix} -3 \\ 6  \\ 4 \end{pmatrix}=</math>{ 32 }
||Es gibt zwei Möglichkeiten zur Berechnung des Skalarprodukts. Entweder berechnet man es mit Hilfe der Komponentendarstellung:<math>\vec{\mathbf{a}}\cdot\vec{\mathbf{b}} = \begin{pmatrix}a_1 \\ a_2 \\ a_3 \end{pmatrix}\cdot\begin{pmatrix}b_1 \\ b_2 \\ b_3 \end{pmatrix}=a_1b_1+a_2b_2+a_3b_3</math> oder man nutzt den eingeschlossenen Winkel: <math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a \vec{\mathbf{e}}_{a} \cdot \vec{\mathbf{e}}_{b} = a b \cos \alpha </math>.
+
||There are two possibilities to compute the dot product. Either the component representation <math>\vec{\mathbf{a}}\cdot\vec{\mathbf{b}} = \begin{pmatrix}a_1 \\ a_2 \\ a_3 \end{pmatrix}\cdot\begin{pmatrix}b_1 \\ b_2 \\ b_3 \end{pmatrix}=a_1b_1+a_2b_2+a_3b_3</math> is used or the angle between the vectors: <math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a \vec{\mathbf{e}}_{a} \cdot \vec{\mathbf{e}}_{b} = a b \cos \alpha </math>.
  
  
{'''Bitte lösen Sie folgende Aufgabe:'''
+
{'''Please solve the following exercise:'''
 
| type="{}" }
 
| type="{}" }
 
<math>\begin{pmatrix} 1 \\ 2  \\ 3 \end{pmatrix}\cdot \begin{pmatrix} -4 \\ 1  \\ -6 \end{pmatrix}=</math>{ -20 }
 
<math>\begin{pmatrix} 1 \\ 2  \\ 3 \end{pmatrix}\cdot \begin{pmatrix} -4 \\ 1  \\ -6 \end{pmatrix}=</math>{ -20 }
||Es gibt zwei Möglichkeiten zur Berechnung des Skalarprodukts. Entweder berechnet man es mit Hilfe der Komponentendarstellung:<math>\vec{\mathbf{a}}\cdot\vec{\mathbf{b}} = \begin{pmatrix}a_1 \\ a_2 \\ a_3 \end{pmatrix}\cdot\begin{pmatrix}b_1 \\ b_2 \\ b_3 \end{pmatrix}=a_1b_1+a_2b_2+a_3b_3</math> oder man nutzt den eingeschlossenen Winkel: <math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a \vec{\mathbf{e}}_{a} \cdot \vec{\mathbf{e}}_{b} = ab \cos \alpha </math>.
+
||There are two possibilities to compute the dot product. Either the component representation <math>\vec{\mathbf{a}}\cdot\vec{\mathbf{b}} = \begin{pmatrix}a_1 \\ a_2 \\ a_3 \end{pmatrix}\cdot\begin{pmatrix}b_1 \\ b_2 \\ b_3 \end{pmatrix}=a_1b_1+a_2b_2+a_3b_3</math> is used or the angle between the vectors: <math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a \vec{\mathbf{e}}_{a} \cdot \vec{\mathbf{e}}_{b} = a b \cos \alpha </math>.
  
  
{'''Bitte lösen Sie folgende Aufgabe:'''
+
{'''Please solve the following exercise:'''
 
| type="{}" }
 
| type="{}" }
 
<math>\begin{pmatrix} 0 \\ 1  \\ 0 \end{pmatrix}\cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}=</math> { 1 }
 
<math>\begin{pmatrix} 0 \\ 1  \\ 0 \end{pmatrix}\cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}=</math> { 1 }
||Es gibt zwei Möglichkeiten zur Berechnung des Skalarprodukts. Entweder berechnet man es mit Hilfe der Komponentendarstellung:<math>\vec{\mathbf{a}}\cdot\vec{\mathbf{b}} = \begin{pmatrix}a_1 \\ a_2 \\ a_3 \end{pmatrix}\cdot\begin{pmatrix}b_1 \\ b_2 \\ b_3 \end{pmatrix}=a_1b_1+a_2b_2+a_3b_3</math> oder man nutzt den eingeschlossenen Winkel: <math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a \vec{\mathbf{e}}_{a} \cdot \vec{\mathbf{e}}_{b} = a b \cos \alpha </math>.
+
||There are two possibilities to compute the dot product. Either the component representation <math>\vec{\mathbf{a}}\cdot\vec{\mathbf{b}} = \begin{pmatrix}a_1 \\ a_2 \\ a_3 \end{pmatrix}\cdot\begin{pmatrix}b_1 \\ b_2 \\ b_3 \end{pmatrix}=a_1b_1+a_2b_2+a_3b_3</math> is used or the angle between the vectors: <math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a \vec{\mathbf{e}}_{a} \cdot \vec{\mathbf{e}}_{b} = a b \cos \alpha </math>.
 
</quiz>
 
</quiz>
  
 
[[Category:Selftest]]
 
[[Category:Selftest]]
 
[[Category:Vectors]]
 
[[Category:Vectors]]

Revision as of 16:30, 23 May 2014

← Previous exercise: Simple arithmetic operations Exercises for chapter {{{chapter}}} | Article: Vector algebra Next exercise: Cross product
Point added for a correct answer:  
Points for a wrong answer:
Ignore the questions' coefficients:

1. What is the result of dor product of \vec{\mathbf{a}} and \vec{\mathbf{b}}?

Vektorrechnung aufgabe10.1.png


\begin{pmatrix} 3 \\  5 \end{pmatrix}
1,5
15
The result of the dot product is a scalar value. In this case the easiest way to compute the dot product is using the angle between the two vectors: \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} =  a b \cos \alpha. The angle is 0° and so the cosine is 1. Further information: see Dot product.

2. What is the result of dor product of \vec{\mathbf{a}} and \vec{\mathbf{b}}?

Vektorrechnung aufgabe10.2.png


\begin{pmatrix} 5 \\  3 \end{pmatrix}
15
0
The result of the dot product is a scalar value. In this case the easiest way to compute the dot product is using the angle between the two vectors: \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} =  a b \cos \alpha. The angle is 90° and so the cosine is 0. Further information: see Dot product.

3. What is the result of dor product of \vec{\mathbf{a}} and \vec{\mathbf{b}}?

Vektorrechnung aufgabe10.3.png


\begin{pmatrix} 5 \\  3 \end{pmatrix}
-15
15
The result of the dot product is a scalar value. In this case the easiest way to compute the dot product is using the angle between the two vectors: \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} =  a b \cos \alpha. The angle is 180° and so the cosine is -1. Further information: see Dot product.

4. Please solve the following exercise:

\begin{pmatrix} 2 \\ 3  \\ 5 \end{pmatrix}\cdot \begin{pmatrix} -3 \\ 6  \\ 4 \end{pmatrix}=
→ There are two possibilities to compute the dot product. Either the component representation \vec{\mathbf{a}}\cdot\vec{\mathbf{b}} = \begin{pmatrix}a_1 \\ a_2 \\ a_3 \end{pmatrix}\cdot\begin{pmatrix}b_1 \\ b_2 \\ b_3 \end{pmatrix}=a_1b_1+a_2b_2+a_3b_3 is used or the angle between the vectors: \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a \vec{\mathbf{e}}_{a} \cdot \vec{\mathbf{e}}_{b} = a b \cos \alpha .

5. Please solve the following exercise:

\begin{pmatrix} 1 \\ 2  \\ 3 \end{pmatrix}\cdot \begin{pmatrix} -4 \\ 1  \\ -6 \end{pmatrix}=
→ There are two possibilities to compute the dot product. Either the component representation \vec{\mathbf{a}}\cdot\vec{\mathbf{b}} = \begin{pmatrix}a_1 \\ a_2 \\ a_3 \end{pmatrix}\cdot\begin{pmatrix}b_1 \\ b_2 \\ b_3 \end{pmatrix}=a_1b_1+a_2b_2+a_3b_3 is used or the angle between the vectors: \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a \vec{\mathbf{e}}_{a} \cdot \vec{\mathbf{e}}_{b} = a b \cos \alpha .

6. Please solve the following exercise:

\begin{pmatrix} 0 \\ 1  \\ 0 \end{pmatrix}\cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}=
→ There are two possibilities to compute the dot product. Either the component representation \vec{\mathbf{a}}\cdot\vec{\mathbf{b}} = \begin{pmatrix}a_1 \\ a_2 \\ a_3 \end{pmatrix}\cdot\begin{pmatrix}b_1 \\ b_2 \\ b_3 \end{pmatrix}=a_1b_1+a_2b_2+a_3b_3 is used or the angle between the vectors: \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a \vec{\mathbf{e}}_{a} \cdot \vec{\mathbf{e}}_{b} = a b \cos \alpha .

Your score is 0 / 0