Difference between revisions of "Selftest: Dot product"

From Robotics
Jump to: navigation, search
Line 1: Line 1:
 
{{ExerciseNavigation|previous=[[Selftest:Simple arithmetic operations|Simple arithmetic operations]]|article=[[Vector algebra]]|next=[[Selftest:Cross product|Cross product]]}}
 
{{ExerciseNavigation|previous=[[Selftest:Simple arithmetic operations|Simple arithmetic operations]]|article=[[Vector algebra]]|next=[[Selftest:Cross product|Cross product]]}}
 +
 +
<quiz>
 +
 +
{'''What is the result of dor product of <math>\vec{\mathbf{a}}</math> and <math>\vec{\mathbf{b}}</math>?'''
 +
[[File: Vektorrechnung_aufgabe10.1.png|300px|left]]
 +
<br style="clear:both;" />
 +
| typ="()" }
 +
- <math>\begin{pmatrix} 3 \\  5 \end{pmatrix}</math>
 +
- 1,5
 +
+ 15
 +
||The result of the dot product is a ''scalar'' value. In this case the easiest way to compute the dot product is using the angle between the two vectors:<math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} =  a b \cos \alpha</math>. The angle is 0° and so the cosine is 1. Further information: see [[Dot product]].
 +
 +
{'''What is the result of dor product of <math>\vec{\mathbf{a}}</math> and <math>\vec{\mathbf{b}}</math>?'''
 +
[[File: Vektorrechnung_aufgabe10.2.png|300px|left]]
 +
<br style="clear:both;" />
 +
| typ="()" }
 +
- <math>\begin{pmatrix} 5 \\  3 \end{pmatrix}</math>
 +
- 15
 +
+  0
 +
||The result of the dot product is a ''scalar'' value. In this case the easiest way to compute the dot product is using the angle between the two vectors:<math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} =  a b \cos \alpha</math>. The angle is 90° and so the cosine is 0. Further information: see [[Dot product]].
 +
 +
 +
 +
 +
{'''What is the result of dor product of <math>\vec{\mathbf{a}}</math> and <math>\vec{\mathbf{b}}</math>?'''
 +
[[File: Vektorrechnung_aufgabe10.3.png|300px|left]]
 +
<br style="clear:both;" />
 +
| typ="()" }
 +
- <math>\begin{pmatrix} 5 \\  3 \end{pmatrix}</math>
 +
+ -15
 +
- 15
 +
||The result of the dot product is a ''scalar'' value. In this case the easiest way to compute the dot product is using the angle between the two vectors:<math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} =  a b \cos \alpha</math>. The angle is 180° and so the cosine is -1. Further information: see [[Dot product]].
 +
 +
 +
 +
 +
 +
 +
{'''Bitte lösen Sie folgende Aufgabe:'''
 +
| type="{}" }
 +
<math>\begin{pmatrix} 2 \\ 3  \\ 5 \end{pmatrix}\cdot \begin{pmatrix} -3 \\ 6  \\ 4 \end{pmatrix}=</math>{ 32 }
 +
||Es gibt zwei Möglichkeiten zur Berechnung des Skalarprodukts. Entweder berechnet man es mit Hilfe der Komponentendarstellung:<math>\vec{\mathbf{a}}\cdot\vec{\mathbf{b}} = \begin{pmatrix}a_1 \\ a_2 \\ a_3 \end{pmatrix}\cdot\begin{pmatrix}b_1 \\ b_2 \\ b_3 \end{pmatrix}=a_1b_1+a_2b_2+a_3b_3</math> oder man nutzt den eingeschlossenen Winkel: <math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a \vec{\mathbf{e}}_{a} \cdot \vec{\mathbf{e}}_{b} = a b \cos \alpha </math>.
 +
 +
 +
{'''Bitte lösen Sie folgende Aufgabe:'''
 +
| type="{}" }
 +
<math>\begin{pmatrix} 1 \\ 2  \\ 3 \end{pmatrix}\cdot \begin{pmatrix} -4 \\ 1  \\ -6 \end{pmatrix}=</math>{ -20 }
 +
||Es gibt zwei Möglichkeiten zur Berechnung des Skalarprodukts. Entweder berechnet man es mit Hilfe der Komponentendarstellung:<math>\vec{\mathbf{a}}\cdot\vec{\mathbf{b}} = \begin{pmatrix}a_1 \\ a_2 \\ a_3 \end{pmatrix}\cdot\begin{pmatrix}b_1 \\ b_2 \\ b_3 \end{pmatrix}=a_1b_1+a_2b_2+a_3b_3</math> oder man nutzt den eingeschlossenen Winkel: <math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a \vec{\mathbf{e}}_{a} \cdot \vec{\mathbf{e}}_{b} = ab \cos \alpha </math>.
 +
 +
 +
{'''Bitte lösen Sie folgende Aufgabe:'''
 +
| type="{}" }
 +
<math>\begin{pmatrix} 0 \\ 1  \\ 0 \end{pmatrix}\cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}=</math> { 1 }
 +
||Es gibt zwei Möglichkeiten zur Berechnung des Skalarprodukts. Entweder berechnet man es mit Hilfe der Komponentendarstellung:<math>\vec{\mathbf{a}}\cdot\vec{\mathbf{b}} = \begin{pmatrix}a_1 \\ a_2 \\ a_3 \end{pmatrix}\cdot\begin{pmatrix}b_1 \\ b_2 \\ b_3 \end{pmatrix}=a_1b_1+a_2b_2+a_3b_3</math> oder man nutzt den eingeschlossenen Winkel: <math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a \vec{\mathbf{e}}_{a} \cdot \vec{\mathbf{e}}_{b} = a b \cos \alpha </math>.
 +
</quiz>
  
 
[[Category:Selftest]]
 
[[Category:Selftest]]
 
[[Category:Vectors]]
 
[[Category:Vectors]]

Revision as of 16:26, 23 May 2014

← Previous exercise: Simple arithmetic operations Exercises for chapter {{{chapter}}} | Article: Vector algebra Next exercise: Cross product
Point added for a correct answer:  
Points for a wrong answer:
Ignore the questions' coefficients:

1. What is the result of dor product of \vec{\mathbf{a}} and \vec{\mathbf{b}}?

Vektorrechnung aufgabe10.1.png


\begin{pmatrix} 3 \\  5 \end{pmatrix}
1,5
15
The result of the dot product is a scalar value. In this case the easiest way to compute the dot product is using the angle between the two vectors:\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} =  a b \cos \alpha. The angle is 0° and so the cosine is 1. Further information: see Dot product.

2. What is the result of dor product of \vec{\mathbf{a}} and \vec{\mathbf{b}}?

Vektorrechnung aufgabe10.2.png


\begin{pmatrix} 5 \\  3 \end{pmatrix}
15
0
The result of the dot product is a scalar value. In this case the easiest way to compute the dot product is using the angle between the two vectors:\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} =  a b \cos \alpha. The angle is 90° and so the cosine is 0. Further information: see Dot product.

3. What is the result of dor product of \vec{\mathbf{a}} and \vec{\mathbf{b}}?

Vektorrechnung aufgabe10.3.png


\begin{pmatrix} 5 \\  3 \end{pmatrix}
-15
15
The result of the dot product is a scalar value. In this case the easiest way to compute the dot product is using the angle between the two vectors:\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} =  a b \cos \alpha. The angle is 180° and so the cosine is -1. Further information: see Dot product.

4. Bitte lösen Sie folgende Aufgabe:

\begin{pmatrix} 2 \\ 3  \\ 5 \end{pmatrix}\cdot \begin{pmatrix} -3 \\ 6  \\ 4 \end{pmatrix}=
→ Es gibt zwei Möglichkeiten zur Berechnung des Skalarprodukts. Entweder berechnet man es mit Hilfe der Komponentendarstellung:\vec{\mathbf{a}}\cdot\vec{\mathbf{b}} = \begin{pmatrix}a_1 \\ a_2 \\ a_3 \end{pmatrix}\cdot\begin{pmatrix}b_1 \\ b_2 \\ b_3 \end{pmatrix}=a_1b_1+a_2b_2+a_3b_3 oder man nutzt den eingeschlossenen Winkel: \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a \vec{\mathbf{e}}_{a} \cdot \vec{\mathbf{e}}_{b} = a b \cos \alpha .

5. Bitte lösen Sie folgende Aufgabe:

\begin{pmatrix} 1 \\ 2  \\ 3 \end{pmatrix}\cdot \begin{pmatrix} -4 \\ 1  \\ -6 \end{pmatrix}=
→ Es gibt zwei Möglichkeiten zur Berechnung des Skalarprodukts. Entweder berechnet man es mit Hilfe der Komponentendarstellung:\vec{\mathbf{a}}\cdot\vec{\mathbf{b}} = \begin{pmatrix}a_1 \\ a_2 \\ a_3 \end{pmatrix}\cdot\begin{pmatrix}b_1 \\ b_2 \\ b_3 \end{pmatrix}=a_1b_1+a_2b_2+a_3b_3 oder man nutzt den eingeschlossenen Winkel: \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a \vec{\mathbf{e}}_{a} \cdot \vec{\mathbf{e}}_{b} = ab \cos \alpha .

6. Bitte lösen Sie folgende Aufgabe:

\begin{pmatrix} 0 \\ 1  \\ 0 \end{pmatrix}\cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}=
→ Es gibt zwei Möglichkeiten zur Berechnung des Skalarprodukts. Entweder berechnet man es mit Hilfe der Komponentendarstellung:\vec{\mathbf{a}}\cdot\vec{\mathbf{b}} = \begin{pmatrix}a_1 \\ a_2 \\ a_3 \end{pmatrix}\cdot\begin{pmatrix}b_1 \\ b_2 \\ b_3 \end{pmatrix}=a_1b_1+a_2b_2+a_3b_3 oder man nutzt den eingeschlossenen Winkel: \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a \vec{\mathbf{e}}_{a} \cdot \vec{\mathbf{e}}_{b} = a b \cos \alpha .

Your score is 0 / 0