Difference between revisions of "Minors and cofactors"

From Robotics
Jump to: navigation, search
Line 1: Line 1:
 
The '''minor <math>M_{i,j}(\mathbf{A})</math>''' of an n-by-n square matrix <math>\mathbf{A}</math> is the determinant of a smaller square matrix obtained by removing the row <math>i</math> and the column <math>j</math> from <math>\mathbf{A}</math>.<br/><br/>
 
The '''minor <math>M_{i,j}(\mathbf{A})</math>''' of an n-by-n square matrix <math>\mathbf{A}</math> is the determinant of a smaller square matrix obtained by removing the row <math>i</math> and the column <math>j</math> from <math>\mathbf{A}</math>.<br/><br/>
 +
 +
Multiplying the minor with <math>(-1)^{i+j}</math> results in the '''cofactor <math>C_{i,j}(\mathbf{A})</math>''':<br/><br/>
 +
<math>C_{i,j}(\mathbf{A})=(-1)^{i+j}M_{i,j}(\mathbf{A})</math><br/><br/>
  
 
{{Example
 
{{Example
|Title=Minors
+
|Title=Minors and cofactors
 
+
|Contents=
 +
<br/><math>
 +
\mathbf{A}_e  =
 +
\left[\begin{array}{cccc}
 +
1 & 2 & 0 & 0\\
 +
3 & 0 & 1 & 1\\
 +
0 & 1 & 0 & 0\\
 +
0 & 0 & 2 & 1
 +
\end{array}\right]</math><br/><br/>
 
The minors <math>M_{1,4}(\mathbf{A}_e)</math> and <math>M_{3,1}(\mathbf{A}_e)</math> for example are defined as<br/><br/>
 
The minors <math>M_{1,4}(\mathbf{A}_e)</math> and <math>M_{3,1}(\mathbf{A}_e)</math> for example are defined as<br/><br/>
 
<math>M_{1,4}(\mathbf{A}_e)=
 
<math>M_{1,4}(\mathbf{A}_e)=
Line 18: Line 29:
 
\end{array}\right|=6-0=6
 
\end{array}\right|=6-0=6
 
</math><br/>
 
</math><br/>
  <math>
+
<math>
 
M_{3,1}(\mathbf{A}_e)=
 
M_{3,1}(\mathbf{A}_e)=
 
\left|\begin{array}{cccc}
 
\left|\begin{array}{cccc}
Line 31: Line 42:
 
0 & 2 & 1
 
0 & 2 & 1
 
\end{array}\right|=2-4=-2
 
\end{array}\right|=2-4=-2
</math>
+
</math><br/><br/>
 
+
The corresponding cofactors in that case are<br/><br/>
<br/>
+
<math>C_{1,4}(\mathbf{A}_e)=(-1)^{1+4}M_{1,4}(\mathbf{A}_e)=(-1)^5\cdot6=-6</math><br/><br/>
Multiplying the minor with <math>(-1)^{i+j}</math> results in the '''cofactor <math>C_{i,j}(\mathbf{A})</math>''':<br/><br/>
+
<math>C_{3,1}(\mathbf{A}_e)=(-1)^{3+1}M_{3,1}(\mathbf{A}_e)=(-1)^4\cdot-2=-2</math>
<math>C_{i,j}(\mathbf{A})=(-1)^{i+j}M_{i,j}(\mathbf{A})</math><br/><br/>
+
}}
 
 
  <math>C_{1,4}(\mathbf{A}_e)=(-1)^{1+4}M_{1,4}(\mathbf{A}_e)=(-1)^5\cdot6=-6</math>
 

Revision as of 15:40, 9 May 2014

The minor M_{i,j}(\mathbf{A}) of an n-by-n square matrix \mathbf{A} is the determinant of a smaller square matrix obtained by removing the row i and the column j from \mathbf{A}.

Multiplying the minor with (-1)^{i+j} results in the cofactor C_{i,j}(\mathbf{A}):

C_{i,j}(\mathbf{A})=(-1)^{i+j}M_{i,j}(\mathbf{A})

Example: Minors and cofactors



\mathbf{A}_e  = 
\left[\begin{array}{cccc}
1 & 2 & 0 & 0\\
3 & 0 & 1 & 1\\
0 & 1 & 0 & 0\\
0 & 0 & 2 & 1
\end{array}\right]

The minors M_{1,4}(\mathbf{A}_e) and M_{3,1}(\mathbf{A}_e) for example are defined as

M_{1,4}(\mathbf{A}_e)=
\left|\begin{array}{cccc}
\Box & \Box & \Box & \Box\\
3 & 0 & 1 & \Box\\
0 & 1 & 0 & \Box\\
0 & 0 & 2 & \Box
\end{array}\right|=
\left|\begin{array}{ccc}
3 & 0 & 1\\
0 & 1 & 0\\
0 & 0 & 2
\end{array}\right|=6-0=6

M_{3,1}(\mathbf{A}_e)=
\left|\begin{array}{cccc}
\Box & 2 & 0 & 0\\
\Box & 0 & 1 & 1\\
\Box & \Box & \Box & \Box\\
\Box & 0 & 2 & 1
\end{array}\right|=
\left|\begin{array}{ccc}
2 & 0 & 0\\
0 & 1 & 1\\
0 & 2 & 1
\end{array}\right|=2-4=-2

The corresponding cofactors in that case are

C_{1,4}(\mathbf{A}_e)=(-1)^{1+4}M_{1,4}(\mathbf{A}_e)=(-1)^5\cdot6=-6

C_{3,1}(\mathbf{A}_e)=(-1)^{3+1}M_{3,1}(\mathbf{A}_e)=(-1)^4\cdot-2=-2