Difference between revisions of "Determinant of a matrix"

From Robotics
Jump to: navigation, search
(Created page with " This paragraph describes a formula to compute the determinant of a 4-by-4 matrix using minors and cofactors of a matrix.<br/> <br/> To compute the determinant of matrix <ma...")
 
Line 1: Line 1:
  
This paragraph describes a formula to compute the determinant of a 4-by-4 matrix using minors and cofactors of a matrix.<br/>
+
This article describes a formula to compute the determinant of a 4-by-4 matrix using minors and cofactors of a matrix.<br/>
  
 
<br/>
 
 
To compute the determinant of matrix <math>\mathbf{A}</math> first one row or column is choosen. The sum of the four corresponding values of the row or column multiplied by the related cofactors results in the determinant:<br/><br/>
 
To compute the determinant of matrix <math>\mathbf{A}</math> first one row or column is choosen. The sum of the four corresponding values of the row or column multiplied by the related cofactors results in the determinant:<br/><br/>
  
Line 9: Line 7:
 
\det(\mathbf{A})=\sum_{(i,j) \isin \text{ one row or column}}{a_{i,j}C_{i,j}}
 
\det(\mathbf{A})=\sum_{(i,j) \isin \text{ one row or column}}{a_{i,j}C_{i,j}}
 
</math>
 
</math>
 +
<br/><br/>
  
  For the example matrix it is useful to choose the row 3 because it contains three zero values as factors:<br/>
+
{{Example
  <math>\begin{align}
+
|Title=determinant of a 4-by-4 matrix
 +
|Contents=
 +
<br/><math>
 +
\mathbf{A}_e  =
 +
\left[\begin{array}{cccc}
 +
1 & 2 & 0 & 0\\
 +
3 & 0 & 1 & 1\\
 +
0 & 1 & 0 & 0\\
 +
0 & 0 & 2 & 1
 +
\end{array}\right]</math><br/><br/>
 +
For matrix <math>\mathbf{A}_e</math> it is useful to choose row 3 because it contains three zero values as factors:<br/><br/>
 +
<math>\begin{align}
 
\det(\mathbf{A}_e)&=
 
\det(\mathbf{A}_e)&=
 
\left|\begin{array}{cccc}
 
\left|\begin{array}{cccc}
Line 48: Line 58:
 
&= 0&+&1\cdot(-1)\cdot(-1)&+&0&+&0\\
 
&= 0&+&1\cdot(-1)\cdot(-1)&+&0&+&0\\
 
&= 1&\quad&\quad&\quad
 
&= 1&\quad&\quad&\quad
\end{align}</math><br/>
+
\end{align}</math>
 +
}}

Revision as of 15:46, 9 May 2014

This article describes a formula to compute the determinant of a 4-by-4 matrix using minors and cofactors of a matrix.

To compute the determinant of matrix \mathbf{A} first one row or column is choosen. The sum of the four corresponding values of the row or column multiplied by the related cofactors results in the determinant:


\det(\mathbf{A})=\sum_{(i,j) \isin \text{ one row or column}}{a_{i,j}C_{i,j}}

Example: determinant of a 4-by-4 matrix



\mathbf{A}_e  = 
\left[\begin{array}{cccc}
1 & 2 & 0 & 0\\
3 & 0 & 1 & 1\\
0 & 1 & 0 & 0\\
0 & 0 & 2 & 1
\end{array}\right]

For matrix \mathbf{A}_e it is useful to choose row 3 because it contains three zero values as factors:

\begin{align}
\det(\mathbf{A}_e)&=
\left|\begin{array}{cccc}
1 & 2 & 0 & 0\\
3 & 0 & 1 & 1\\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0}\\
0 & 0 & 2 & 1
\end{array}\right| & \quad & \quad & \quad\\
&=
\mathbf{0}\cdot C_{3,1}&+&\mathbf{1}\cdot C_{3,2}&+&\mathbf{0}\cdot C_{3,3}&+&\mathbf{0}\cdot C_{3,4}\\
&=
0\cdot(-1)^{3+1}
\left|\begin{array}{ccc}
2 & 0 & 0\\
0 & 1 & 1\\
0 & 2 & 1
\end{array}\right|
&+&1\cdot(-1)^{3+2}
\left|\begin{array}{ccc}
1 & 0 & 0\\
3 & 1 & 1\\
0 & 2 & 1
\end{array}\right|
&+&0\cdot(-1)^{3+3}
\left|\begin{array}{ccc}
1 & 2 & 0\\
3 & 0 & 1\\
0 & 0 & 1
\end{array}\right|
&+&0\cdot(-1)^{3+4}
\left|\begin{array}{ccc}
1 & 2 & 0\\
3 & 0 & 1\\
0 & 0 & 2
\end{array}\right|\\
&= 0&+&1\cdot(-1)\cdot(-1)&+&0&+&0\\
&= 1&\quad&\quad&\quad
\end{align}