Selftest: Simple arithmetic operations

From Robotics
Revision as of 15:58, 23 May 2014 by Nickchen (talk | contribs)

Jump to: navigation, search
← Previous exercise: Unit vector Exercises for chapter {{{chapter}}} | Article: Vector algebra Next exercise: Dot product
Point added for a correct answer:  
Points for a wrong answer:
Ignore the questions' coefficients:

1. Which of the following vectors forms the sum of \vec{\mathbf{a}} and \vec{\mathbf{b}}?

Vektorrechnung Aufgabe6.1.png


\begin{pmatrix} 0 \\ 6 \end{pmatrix}
\begin{pmatrix} 2 \\ 3 \end{pmatrix}
\begin{pmatrix} 5 \\ 0 \end{pmatrix}
\begin{pmatrix} -2 \\ 3 \end{pmatrix}
The x-components of the two vectors cancel each other. Therefore the sum vector only has an y-component unequal zero. The length is the sum of the two y-components. Further information: see Simple arithmetic operations

2. Which of the following vectors forms the sum of \vec{\mathbf{a}} and \vec{\mathbf{b}}?

Vektorrechnung Aufgabe6.2.png


\begin{pmatrix} -5 \\ 6 \end{pmatrix}
\begin{pmatrix} -2 \\ 0 \end{pmatrix}
\begin{pmatrix} 0 \\ -3 \end{pmatrix}
\begin{pmatrix} -6 \\ 5 \end{pmatrix}
Vector \vec{\mathbf{a}} only has an x-component, vector \vec{\mathbf{b}} in contrast only has a y-component. The resulting vector consists of the x-component of \vec{\mathbf{a}} and the y-component of \vec{\mathbf{b}}. Further information: see Simple arithmetic operations

3. Which of the following vectors forms the sum of \vec{\mathbf{a}} and \vec{\mathbf{b}}?

Vektorrechnung Aufgabe6.3.png


\begin{pmatrix} 0 \\ 6 \end{pmatrix}
\begin{pmatrix} 2 \\ 3 \end{pmatrix}
\begin{pmatrix} 3 \\ 4 \end{pmatrix}
\begin{pmatrix} -4 \\ 3 \end{pmatrix}
The x-component of vector \vec{\mathbf{a}} is directed opposite to the x-component of vector \vec{\mathbf{b}}. So the x-components are substracted. The y-components are added as usual. Further information: see Simple arithmetic operations

4. Which of the following vectors forms the substraction \vec{\mathbf{a}}-\vec{\mathbf{b}}?

Vektorrechnung Aufgabe7.1.png


\begin{pmatrix} 0 \\ -6 \end{pmatrix}
\begin{pmatrix} 7 \\ -3 \end{pmatrix}
\begin{pmatrix} 0 \\ 6 \end{pmatrix}
\begin{pmatrix} -4,5 \\ 2 \end{pmatrix}
Because the x-components are equal, the resulting x-component is zero. The y-component of the resulting vector is the substraction of the y-components. Further information: see Simple arithmetic operations

5. Which of the following vectors forms the substraction \vec{\mathbf{a}}-\vec{\mathbf{b}}?

Vektorrechnung Aufgabe7.2.png


\begin{pmatrix} 3 \\ 0 \end{pmatrix}
\begin{pmatrix} -2 \\ -3 \end{pmatrix}
\begin{pmatrix} 4 \\ -2 \end{pmatrix}
\begin{pmatrix} -4,5 \\ 2 \end{pmatrix}
The substraction of vectors can be traced back to vector addition because \vec{\mathbf{a}}-\vec{\mathbf{b}}=\vec{\mathbf{a}}+(-\vec{\mathbf{b}}). Further information: see Simple arithmetic operations

6. Which of the following vectors forms the substraction \vec{\mathbf{a}}-\vec{\mathbf{b}}?

Vektorrechnung Aufgabe7.3.png


\begin{pmatrix} 0 \\ -6 \end{pmatrix}
\begin{pmatrix} 3 \\ -3 \end{pmatrix}
\begin{pmatrix} 0 \\ 8 \end{pmatrix}
\begin{pmatrix} -2,5 \\ 0,5 \end{pmatrix}
Da die x-Komponenten der zu subtrahierenden Vektoren gleich sind, wird die x-Komponente des Differenzvektors Null. Die Länge der y-Komponente ergibt sich durch Subtraktion der jeweiligen y-Komponenten. Weitere Erklärung siehe Einfache Rechenoperationen mit Vektoren

7. Welche Aussage stimmt?

Zur Berechnung des Differenzvektors \vec{\mathbf{a}}-\vec{\mathbf{b}} bildet man zunächst den Vektor -\vec{\mathbf{a}}, indem man bei dem Vektor \vec{\mathbf{a}} die Richtung umkehrt.
Zur Berechnung des Differenzvektors \vec{\mathbf{a}}-\vec{\mathbf{b}} bildet man zunächst den Vektor -\vec{\mathbf{b}}, indem man bei dem Vektor \vec{\mathbf{a}} die Richtung umkehrt.
Zur Berechnung des Differenzvektors \vec{\mathbf{a}}-\vec{\mathbf{b}} bildet man zunächst den Vektor -\vec{\mathbf{b}}, indem man bei dem Vektor \vec{\mathbf{b}} die Richtung umkehrt.
300px|thumb|left|Die Vektorsubtraktion Die Vektorsubtraktion lässt sich auf die Vektoraddition zurückführen, da \vec{\mathbf{a}}-\vec{\mathbf{b}}=\vec{\mathbf{a}}+(-\vec{\mathbf{b}}) gilt. Weitere Erklärung siehe Einfache Rechenoperationen mit Vektoren

8. Lückentext:

Fügen Sie folgende Wörter ein und achten Sie dabei auf Groß- und Kleinschreibung:

negative Zahl, gleicher Richtung, Nullvektor, Faktor

Multipliziert man einen Vektor \vec{\mathbf{a}} mit einer positiven reellen Zahl p, entsteht ein Vektor\vec{\mathbf{a}}p mit und verändertem Betrag, der sich um den {p} geändert hat. Erhält der Vektor \vec{\mathbf{a}} durch die Multiplikation eine entgegengesetzte Richtung, so handelt es sich um eine . Für den Sonderfall p=0 erhält man einen .

Your score is 0 / 0