Realization of transformations

From Robotics
Revision as of 10:54, 15 October 2015 by Nickchen (talk | contribs)

Jump to: navigation, search
← Back: Composition of rotations Overview: Quaternions Next: ???

Up to now transformations have been defined by homogeneous matrices combining a rotation matrix \mathbf{R} and a translation vector \vec{\mathbf{p}}. Now a new notation is introduced to represent a transformation using two quaternions e and p:


\mathbf{T} = \left[\begin{array}{cccc} & & & \\ & \mathbf{R} &  & \vec{\mathbf{p}} \\ & & & \\ 0 & 0 & 0 & 1\end{array}\right] \equiv \left\{e,p\right\}

The quaternion e is equivalent to \mathbf{R} and describes the rotation while p is defined as 0 \oplus \vec{\mathbf{p}} and so equivalent to the translation.