Difference between revisions of "Realization of transformations"

From Robotics
Jump to: navigation, search
Line 5: Line 5:
 
\mathbf{T} = \left[\begin{array}{cccc} & & & \\ & \mathbf{R} &  & \vec{\mathbf{p}} \\ & & & \\ 0 & 0 & 0 & 1\end{array}\right] \equiv \left\{e,p\right\}
 
\mathbf{T} = \left[\begin{array}{cccc} & & & \\ & \mathbf{R} &  & \vec{\mathbf{p}} \\ & & & \\ 0 & 0 & 0 & 1\end{array}\right] \equiv \left\{e,p\right\}
 
</math>
 
</math>
 +
The quaternion <math>e</math> is equivalent to <math>\mathbf{R}</math> and describes the rotation while <math>p</math> is defined as <math>0 \oplus \vec{\mathbf{p}}</math> and so equivalent to the translation.

Revision as of 10:54, 15 October 2015

← Back: Composition of rotations Overview: Quaternions Next: ???

Up to now transformations have been defined by homogeneous matrices combining a rotation matrix \mathbf{R} and a translation vector \vec{\mathbf{p}}. Now a new notation is introduced to represent a transformation using two quaternions e and p:


\mathbf{T} = \left[\begin{array}{cccc} & & & \\ & \mathbf{R} &  & \vec{\mathbf{p}} \\ & & & \\ 0 & 0 & 0 & 1\end{array}\right] \equiv \left\{e,p\right\}

The quaternion e is equivalent to \mathbf{R} and describes the rotation while p is defined as 0 \oplus \vec{\mathbf{p}} and so equivalent to the translation.