Difference between revisions of "Selftest: Matrix multiplication with a scalar"

From Robotics
Jump to: navigation, search
 
(16 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{ExerciseNavigation|previous=[[Selftest:Minors and cofactors|Minors and cofactors]]|article=[[Matrices]]|next=[[Selftest:Transpose|Transpose]]}}
+
{{ExerciseNavigation|previous=[[Selftest: Minors and cofactors|Minors and cofactors]]|chapter=[[Matrices]]|article=[[Multiplication with a scalar]]|next=[[Selftest: Transpose|Transpose]]}}
 +
<br/>
  
<quiz>
+
<quiz display=simple>
{'''Which ...?'''  
+
{'''Is there any scalar constant <math>c</math>, so that the following equation holds?'''<br/>
[[File:Vektorrechnung_Aufgabe6.1.png|200px|left]]
+
:<math>
      <div style="float:left;">
+
\left[\begin{array}{ccc}1&2&3\\0&2&1\\2&3&0\end{array}\right]\cdot c = \left[\begin{array}{ccc}2&4&6\\0&4&2\\3&6&0\end{array}\right]
      <br style="clear:both;" />
+
</math><br/>
 
| typ="()" }
 
| typ="()" }
+ <math>\begin{pmatrix} 0 \\ 6 \end{pmatrix}</math>
+
- <math>c=0.5</math>
- <math>\begin{pmatrix} 2 \\ 3 \end{pmatrix}</math>
+
- <math>c=1</math>
- <math>\begin{pmatrix} 5 \\ 0 \end{pmatrix}</math>
+
- <math>c=2</math>
- <math>\begin{pmatrix} -2 \\ 3 \end{pmatrix}</math>
+
+ There is no <math>c</math>
||The x-components of the two vectors cancel each other. Therefore the sum vector only has an y-component unequal zero. The length is the sum of the two y-components. Further information: see [[Simple arithmetic operations]]
+
||<math>c=2</math> would be correct for all the green colored components in the result matrix: <math>\left[\begin{array}{ccc}{\color{Green}2}&{\color{Green}4}&{\color{Green}6}\\{\color{Green}0}&{\color{Green}4}&{\color{Green}2}\\{\color{Red}3}&{\color{Green}6}&{\color{Green}0}\end{array}\right]</math>. For the red component <math>c=1.5</math> would be right. So there is no general <math>c</math>, that holds for all the components.
</div>
 
  
{'''Which of the following vectors forms the sum of <math>\vec{\mathbf{a}}</math> and <math>\vec{\mathbf{b}}</math>?'''
+
{'''Is there any scalar constant <math>c</math>, so that the following equation holds?'''<br/>
[[File:Vektorrechnung_Aufgabe6.2.png|200px|left]]
+
:<math>
<div style="float:left;">
+
\left[\begin{array}{ccc}2&0&1\\0&2&3\\1&1&0\end{array}\right]\cdot c = \left[\begin{array}{ccc}4&0&2\\0&4&6\\2&2&0\end{array}\right]
<br style="clear:both;" />
+
</math><br/>
 
| typ="()" }
 
| typ="()" }
+ <math>\begin{pmatrix} -5 \\ 6 \end{pmatrix}</math>
+
- <math>c=0.5</math>
- <math>\begin{pmatrix} -2 \\ 0 \end{pmatrix}</math>
+
- <math>c=1</math>
- <math>\begin{pmatrix} 0 \\ -3 \end{pmatrix}</math>
+
+ <math>c=2</math>
- <math>\begin{pmatrix} -6 \\ 5 \end{pmatrix}</math>
+
- There is no <math>c</math>
||Vector <math>\vec{\mathbf{a}}</math> only has an x-component, vector <math>\vec{\mathbf{b}}</math> in contrast only has a y-component. The resulting vector consists of the x-component of <math>\vec{\mathbf{a}}</math> and the y-component of <math>\vec{\mathbf{b}}</math>. Further information: see [[Simple arithmetic operations]]
+
||If all the components of the left matrix are multiplied by <math>c=2</math>, it results in the right matrix.
</div>
 
  
{'''Which of the following vectors forms the sum of <math>\vec{\mathbf{a}}</math> and <math>\vec{\mathbf{b}}</math>?'''
+
{'''Fill in the correct values of the resulting matrix:'''<br/>
[[File:Vektorrechnung_Aufgabe6.3.png|200px|left]]
+
|typ="{}" }
<div style="float:left;">
+
<math>\left[\begin{array}{ccc}3&2&1\\2&1&2\\2&3&1\end{array}\right]\cdot 3 =</math>
<br style="clear:both;" />
+
<br/>{ 9 _2 } { 6 _2 } { 3 _2 }<br/>{ 6 _2 } { 3 _2 } { 6 _2 }<br/>{ 6 _2 } { 9 _2 } { 3 _2 }
| typ="()" }
 
- <math>\begin{pmatrix} 0 \\ 6 \end{pmatrix}</math>
 
- <math>\begin{pmatrix} 2 \\ 3 \end{pmatrix}</math>
 
+ <math>\begin{pmatrix} 3 \\ 4 \end{pmatrix}</math>
 
- <math>\begin{pmatrix} -4 \\ 3 \end{pmatrix}</math>
 
||The x-component of vector <math>\vec{\mathbf{a}}</math> is directed opposite to the x-component of vector <math>\vec{\mathbf{b}}</math>. So the x-components are substracted. The y-components are added as usual. Further information: see [[Simple arithmetic operations]]
 
</div>
 
 
 
 
 
 
{'''Which of the following vectors forms the substraction <math>\vec{\mathbf{a}}-\vec{\mathbf{b}}</math>?'''
 
[[File:Vektorrechnung_Aufgabe7.1.png|200px|left]]
 
<div style="float:left;">
 
<br style="clear:both;" />
 
| typ="()" }
 
+ <math>\begin{pmatrix} 0 \\ -6 \end{pmatrix}</math>
 
- <math>\begin{pmatrix} 7 \\ -3 \end{pmatrix}</math>
 
- <math>\begin{pmatrix} 0 \\ 6 \end{pmatrix}</math>
 
- <math>\begin{pmatrix} -4,5 \\ 2 \end{pmatrix}</math>
 
||Because the x-components are equal, the resulting x-component is zero. The y-component of the resulting vector is the substraction of the y-components. Further information: see [[Simple arithmetic operations]]
 
</div>
 
  
{'''Which of the following vectors forms the substraction <math>\vec{\mathbf{a}}-\vec{\mathbf{b}}</math>?'''
+
{'''Is the following equation correct?'''<br/>
[[File:Vektorrechnung_Aufgabe7.2.png|200px|left]]
+
:<math>\left[\begin{array}{ccc}2&0&1\\4&1&3\\2&2&1\end{array}\right]\cdot 3 = \left[\begin{array}{ccc}6&0&3\\12&2&9\\6&6&3\end{array}\right]</math><br/>
<div style="float:left;">
 
<br style="clear:both;" />
 
 
| typ="()" }
 
| typ="()" }
- <math>\begin{pmatrix} 3 \\ 0 \end{pmatrix}</math>
+
- Yes
- <math>\begin{pmatrix} -2 \\ -3 \end{pmatrix}</math>
+
+ No
+ <math>\begin{pmatrix} 4 \\ -2 \end{pmatrix}</math>
+
||The central component in the resulting matrix is <math>2</math>. But it has to be <math>3</math>. So the equation is not correct.
- <math>\begin{pmatrix} -4,5 \\ 2 \end{pmatrix}</math>
 
||The substraction of vectors can be traced back to vector addition because <math>\vec{\mathbf{a}}-\vec{\mathbf{b}}=\vec{\mathbf{a}}+(-\vec{\mathbf{b}})</math>. Further information: see [[Simple arithmetic operations]] [[File:Vectoralgebra_addition_substraction.png|300px|left|Vector subtraction]]
 
</div>
 
  
{'''Which of the following vectors forms the substraction <math>\vec{\mathbf{a}}-\vec{\mathbf{b}}</math>?'''
+
{'''Is the following equation correct?'''<br/>
[[File:Vektorrechnung_Aufgabe7.3.png|200px|left]]
+
:<math>
<div style="float:left;">
+
\left[\begin{array}{ccc}1&0&2\\2&1&3\\3&2&1\end{array}\right]\cdot 2 = \left[\begin{array}{ccc}2&0&4\\4&2&6\\6&4&2\end{array}\right]
<br style="clear:both;" />
+
</math><br/>
 
| typ="()" }
 
| typ="()" }
+ <math>\begin{pmatrix} 0 \\ -6 \end{pmatrix}</math>
+
+ Yes
- <math>\begin{pmatrix} 3 \\ -3 \end{pmatrix}</math>
+
- No
- <math>\begin{pmatrix} 0 \\ 8 \end{pmatrix}</math>
+
||The multiplication holds for each of the components.
- <math>\begin{pmatrix} -2,5 \\ 0,5 \end{pmatrix}</math>
 
||Because the x-components are equal, the resulting x-component is zero. The y-component of the resulting vector is the substraction of the y-components. Further information: see [[Simple arithmetic operations]]
 
</div>
 
 
 
{'''Which statement is true?'''}
 
 
 
''(multiple answers possible)''
 
 
 
- For the calculation of the difference vector <math>\vec{\mathbf{a}}-\vec{\mathbf{b}}</math> first the vector <math>-\vec{\mathbf{a}}</math> is formed by inverting the direction of <math>\vec{\mathbf{a}}</math>.
 
- For the calculation of the difference vector <math>\vec{\mathbf{a}}-\vec{\mathbf{b}}</math> first the vector <math>-\vec{\mathbf{b}}</math> is formed by inverting the direction of <math>\vec{\mathbf{a}}</math>.
 
+ For the calculation of the difference vector <math>\vec{\mathbf{a}}-\vec{\mathbf{b}}</math> first the vector <math>-\vec{\mathbf{b}}</math> is formed by inverting the direction of <math>\vec{\mathbf{b}}</math>.
 
||The substraction of vectors can be traced back to vector addition because <math>\vec{\mathbf{a}}-\vec{\mathbf{b}}=\vec{\mathbf{a}}+(-\vec{\mathbf{b}})</math>. Further information: see [[Simple arithmetic operations]] [[File:Vectoralgebra_addition_substraction.png|300px|left|Vector substraction]]
 
 
 
 
 
 
 
{'''Fill-in-the-blank text:'''
 
 
 
Fill in the following words:
 
 
 
''negative value, same direction, zero vector, factor''
 
 
 
| type="{}" }
 
Multiplying a vector <math>\vec{\mathbf{a}}</math> by a real value ''p'' results in a vector <math>\vec{\mathbf{a}}_p</math> with { same direction } and different magnitude. The magnitude changes with { factor }  <math>{p}</math>. If the resulting vector <math>\vec{\mathbf{a}}_p</math> has an oppsite direction, ''p'' is a { negative value }. The special case ''p=0'' results in a { zero vector }.
 
 
</quiz>
 
</quiz>

Latest revision as of 10:23, 25 September 2014

← Previous exercise: Minors and cofactors Exercises for chapter Matrices | Article: Multiplication with a scalar Next exercise: Transpose


1. Is there any scalar constant c, so that the following equation holds?


\left[\begin{array}{ccc}1&2&3\\0&2&1\\2&3&0\end{array}\right]\cdot c = \left[\begin{array}{ccc}2&4&6\\0&4&2\\3&6&0\end{array}\right]
c=0.5
c=1
c=2
There is no c
c=2 would be correct for all the green colored components in the result matrix: \left[\begin{array}{ccc}{\color{Green}2}&{\color{Green}4}&{\color{Green}6}\\{\color{Green}0}&{\color{Green}4}&{\color{Green}2}\\{\color{Red}3}&{\color{Green}6}&{\color{Green}0}\end{array}\right]. For the red component c=1.5 would be right. So there is no general c, that holds for all the components.

2. Is there any scalar constant c, so that the following equation holds?


\left[\begin{array}{ccc}2&0&1\\0&2&3\\1&1&0\end{array}\right]\cdot c = \left[\begin{array}{ccc}4&0&2\\0&4&6\\2&2&0\end{array}\right]
c=0.5
c=1
c=2
There is no c
If all the components of the left matrix are multiplied by c=2, it results in the right matrix.

3. Fill in the correct values of the resulting matrix:

\left[\begin{array}{ccc}3&2&1\\2&1&2\\2&3&1\end{array}\right]\cdot 3 =




4. Is the following equation correct?

\left[\begin{array}{ccc}2&0&1\\4&1&3\\2&2&1\end{array}\right]\cdot 3 = \left[\begin{array}{ccc}6&0&3\\12&2&9\\6&6&3\end{array}\right]
Yes
No
The central component in the resulting matrix is 2. But it has to be 3. So the equation is not correct.

5. Is the following equation correct?


\left[\begin{array}{ccc}1&0&2\\2&1&3\\3&2&1\end{array}\right]\cdot 2 = \left[\begin{array}{ccc}2&0&4\\4&2&6\\6&4&2\end{array}\right]
Yes
No
The multiplication holds for each of the components.

Your score is 0 / 0