Difference between revisions of "Selftest: Matrix multiplication with a scalar"

From Robotics
Jump to: navigation, search
Line 2: Line 2:
  
 
<quiz display=simple>
 
<quiz display=simple>
{'''Which ...?'''
+
{
[[File:Vektorrechnung_Aufgabe6.1.png|200px|left]]
+
:<math>
      <div style="float:left;">
+
\left[\begin{array}{ccc}
      <br style="clear:both;" />
+
1&2&3\\
 +
0&2&1\\
 +
2&3&0
 +
\end{array}\right]
 +
\cdot c =
 +
\left[\begin{array}{ccc}
 +
2&4&6\\
 +
0&4&2\\
 +
3&6&0
 +
\end{array}\right]
 +
</math><br/>
 +
'''Is there any scalar constant <math>c</math>, so that the equation holds?'''
 
| typ="()" }
 
| typ="()" }
+ <math>\begin{pmatrix} 0 \\ 6 \end{pmatrix}</math>
+
- <math>c=0.5</math>
- <math>\begin{pmatrix} 2 \\ 3 \end{pmatrix}</math>
+
- <math>c=1</math>
- <math>\begin{pmatrix} 5 \\ 0 \end{pmatrix}</math>
+
- <math>c=2</math>
- <math>\begin{pmatrix} -2 \\ 3 \end{pmatrix}</math>
+
+ There is no <math>c</math>
||The x-components of the two vectors cancel each other. Therefore the sum vector only has an y-component unequal zero. The length is the sum of the two y-components. Further information: see [[Simple arithmetic operations]]
+
||<math>c=2</math> would be correct for all the components except the lower left one. Here <math>c=1.5</math> would be right.<br/>
 +
:<math>
 +
\left[\begin{array}{ccc}
 +
2&4&6\\
 +
0&4&2\\
 +
{\color{Red}3}&6&0
 +
\end{array}\right]
 +
</math>
 +
 
 
</div>
 
</div>
  

Revision as of 16:02, 18 June 2014

← Previous exercise: Minors and cofactors Exercises for chapter Matrices | Article: Multiplication with a scalar Next exercise: Transpose

1. :<math> \left[\begin{array}{ccc

c=0.5
c=1
c=2
There is no c
c=2 would be correct for all the components except the lower left one. Here c=1.5 would be right.

2. Which of the following vectors forms the sum of \vec{\mathbf{a}} and \vec{\mathbf{b}}?

Vektorrechnung Aufgabe6.2.png


\begin{pmatrix} -5 \\ 6 \end{pmatrix}
\begin{pmatrix} -2 \\ 0 \end{pmatrix}
\begin{pmatrix} 0 \\ -3 \end{pmatrix}
\begin{pmatrix} -6 \\ 5 \end{pmatrix}
Vector \vec{\mathbf{a}} only has an x-component, vector \vec{\mathbf{b}} in contrast only has a y-component. The resulting vector consists of the x-component of \vec{\mathbf{a}} and the y-component of \vec{\mathbf{b}}. Further information: see Simple arithmetic operations

3. Which of the following vectors forms the sum of \vec{\mathbf{a}} and \vec{\mathbf{b}}?

Vektorrechnung Aufgabe6.3.png


\begin{pmatrix} 0 \\ 6 \end{pmatrix}
\begin{pmatrix} 2 \\ 3 \end{pmatrix}
\begin{pmatrix} 3 \\ 4 \end{pmatrix}
\begin{pmatrix} -4 \\ 3 \end{pmatrix}
The x-component of vector \vec{\mathbf{a}} is directed opposite to the x-component of vector \vec{\mathbf{b}}. So the x-components are substracted. The y-components are added as usual. Further information: see Simple arithmetic operations

4. Which of the following vectors forms the substraction \vec{\mathbf{a}}-\vec{\mathbf{b}}?

Vektorrechnung Aufgabe7.1.png


\begin{pmatrix} 0 \\ -6 \end{pmatrix}
\begin{pmatrix} 7 \\ -3 \end{pmatrix}
\begin{pmatrix} 0 \\ 6 \end{pmatrix}
\begin{pmatrix} -4,5 \\ 2 \end{pmatrix}
Because the x-components are equal, the resulting x-component is zero. The y-component of the resulting vector is the substraction of the y-components. Further information: see Simple arithmetic operations

5. Which of the following vectors forms the substraction \vec{\mathbf{a}}-\vec{\mathbf{b}}?

Vektorrechnung Aufgabe7.2.png


\begin{pmatrix} 3 \\ 0 \end{pmatrix}
\begin{pmatrix} -2 \\ -3 \end{pmatrix}
\begin{pmatrix} 4 \\ -2 \end{pmatrix}
\begin{pmatrix} -4,5 \\ 2 \end{pmatrix}
The substraction of vectors can be traced back to vector addition because \vec{\mathbf{a}}-\vec{\mathbf{b}}=\vec{\mathbf{a}}+(-\vec{\mathbf{b}}). Further information: see Simple arithmetic operations
Vector subtraction

6. Which of the following vectors forms the substraction \vec{\mathbf{a}}-\vec{\mathbf{b}}?

Vektorrechnung Aufgabe7.3.png


\begin{pmatrix} 0 \\ -6 \end{pmatrix}
\begin{pmatrix} 3 \\ -3 \end{pmatrix}
\begin{pmatrix} 0 \\ 8 \end{pmatrix}
\begin{pmatrix} -2,5 \\ 0,5 \end{pmatrix}
Because the x-components are equal, the resulting x-component is zero. The y-component of the resulting vector is the substraction of the y-components. Further information: see Simple arithmetic operations

7. Which statement is true?

For the calculation of the difference vector \vec{\mathbf{a}}-\vec{\mathbf{b}} first the vector -\vec{\mathbf{a}} is formed by inverting the direction of \vec{\mathbf{a}}.
For the calculation of the difference vector \vec{\mathbf{a}}-\vec{\mathbf{b}} first the vector -\vec{\mathbf{b}} is formed by inverting the direction of \vec{\mathbf{a}}.
For the calculation of the difference vector \vec{\mathbf{a}}-\vec{\mathbf{b}} first the vector -\vec{\mathbf{b}} is formed by inverting the direction of \vec{\mathbf{b}}.
The substraction of vectors can be traced back to vector addition because \vec{\mathbf{a}}-\vec{\mathbf{b}}=\vec{\mathbf{a}}+(-\vec{\mathbf{b}}). Further information: see Simple arithmetic operations
Vector substraction

8. Fill-in-the-blank text:

Fill in the following words:

negative value, same direction, zero vector, factor

Multiplying a vector \vec{\mathbf{a}} by a real value p results in a vector \vec{\mathbf{a}}_p with and different magnitude. The magnitude changes with {p}. If the resulting vector \vec{\mathbf{a}}_p has an oppsite direction, p is a . The special case p=0 results in a .

Your score is 0 / 0