A-matrices

From Robotics
Jump to: navigation, search
← Back: Denavit-Hartenberg parameters Overview: Denavit-Hartenberg Convention Next: Typical link examples

The A-matrices describe the precise transformation between each two successive manipulator links. In the previous articles, it was described how the transformation can be described using local coordinate frames and the 4 Denavit-Hartenberg parameters. The parameters describe 2 translational and 2 rotational degrees of freedom, which correspond to 4 transformations, that are applied successively to transform coordinate frame K_n with respect to frame K_{n-1} like shown below.

Dh-params-steps.png

The A-matrices now are used to combine the 4 successive transformations of the Denavit-Hartenberg parameters in one matrix. According to the figure above and following the rules for combinations of transformations, the combined A-matrix is determined as follows:

Amatrices.png

\begin{align}
A_n 
&= 
\mathbf{Trans}(0,0,d_n)\mathbf{Rot}(z,\theta_n)\mathbf{Trans}(l_n,0,0)\mathbf{Rot}(x, \alpha_n) \\
&=
\left[\begin{array}{cccc} 
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_n \\
0 & 0 & 0 & 1 
\end{array}\right]
\left[\begin{array}{cccc} 
\cos{\theta_n} & -\sin{\theta_n} & 0 & 0 \\
\sin{\theta_n} & \cos{\theta_n} & 0 & 0 \\
0 & 0 & 1 & d \\
0 & 0 & 0 & 1 
\end{array}\right]
\left[\begin{array}{cccc} 
1 & 0 & 0 & l_n \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 
\end{array}\right]
\left[\begin{array}{cccc} 
1 & 0 & 0 & 0 \\
0 & \cos{\alpha_n} & -\sin{\alpha_n} & 0 \\
0 & \sin{\alpha_n} & \cos{\alpha_n} & 0 \\
0 & 0 & 0 & 1 
\end{array}\right] \\
&=
\left[\begin{array}{cccc} 
\cos{\theta_n} & -\sin{\theta_n}\cos{\alpha_n} & \sin{\theta_n}\sin{\alpha_n} & l\cos{\theta_n} \\
\sin{\theta_n} & \cos{\theta_n}\cos{\alpha_n} & -\cos{\theta_n}\sin{\alpha_n} & l\sin{\theta_n} \\
0 & \sin{\alpha_n} & \cos{\alpha_n} & d \\
0 & 0 & 0 & 1 
\end{array}\right]
\end{align}

So the A-matrix for link L_n can just be computed by setting in the parameters \theta_n, d_n, l_n and \alpha_n determined before. As shown in the figure on the right, A_n then describes the transformation between the coordinate frames K_{n-1} at the beginning and K_n at the end of link L_n including the static transformation as well as the translation or rotation caused by the joint J_n.