Power Conscious BIST Approaches

Arnaud Virazel Hans-Joachim Wunderlich

University of Stuttgart

Computer Architecture Lab
Today’s VLSI circuits and systems

- Test costs become significant
 - Built-In Self-Test

- Power consumption
 - High activity during the test phase

➔ Low power BIST approaches
1. Introduction

2. Power consumption

3. Power consideration during BIST

4. Functional BIST

5. Conclusion & Perspectives
1. Introduction - Context

- Built-In Self Test Principle
 - Test pattern generator
 - and signature analyzer inserted in the design

- Advantages
 - Low cost external test equipment
 - Test performed at the maximum system speed
 - Lower test time by concurrent testing
 - High defect coverage due to a large amount of patterns
 - Test in situ
 - Protecting intellectual property (System-on-Chip)
1. Introduction - BIST Approaches

- Test per-scan
 - Scan design
 - Serial test resources

Diagram:
- Circuit Under Test
 - Scan Chain
 - Test Pattern Generator
 - Test Controller
 - Signature Analyzer
 - Low Cost External Tester
1. Introduction - BIST Approaches

- Test per-clock
 - Parallel test
 - At-speed
1. Introduction - Problematic and Purpose

- During the BIST: Test phase
 - Test efficiency is correlated with the toggle rate
 - DfT like SCAN are intensively used in test mode
 - High activity during the test phase
 - High power consumption

- Purpose
 - Decrease the power consumption
 - Standard BIST techniques
 - like test per-scan and test per-clock
 - New approach: Functional BIST
2. Power Consumption

- Power consumption in a CMOS design
 - Dynamic power is the dominant source of power
- Power parameters
 - Energy
 - Battery lifetime for portable equipment
 - Average Power
 - Hot spots
 - Bonding wires
 - Package damage
 - Peak Power
 - Burn-out
 - Bad function
 - Destruction
3. Low Power BIST - State of the Art

- Decrease the power consumption during the test

 ➢ Industrial solutions: ad-hoc
 - Oversizing power supply, package and cooling
 - Breaks in the test process
 - Test with reduced operation frequency

 ➢ Academic research
 - Distributed BIST control scheme
 - Circuit partitioning
 - Low power DfT
 - Vector filtering architectures
 - Low power test pattern generator
3. Low Power BIST - State of the Art

- Decrease the power consumption during the test

 ➢ Industrial solutions: ad-hoc
 - Oversizing power supply, package and cooling
 - Breaks in the test process
 - Test with reduced operation frequency

 ➢ Academic research
 - Distributed BIST control scheme
 - Circuit partitioning
 - Low power DfT
 - Vector filtering architectures
 - Low power test pattern generator
Basic view of a sequential circuit
3. Low Power BIST - Low Power DfT

- Scan flip-flop: Multiplexor

![Diagram showing combinational logic and scan flip-flops]
- Scan chain

```
Combinational Logic
```

```
Scan In  Q  Q  Scan Out
D   D   D
sdi  sdi  sdi
Test Enable
```
Modified scan chain

Combinational Logic

Scan In → D → Q
Test Enable

Scan Out → D → Q

What are the necessary test patterns?

Pseudo-random test sequence
What are the necessary test patterns?

- Pseudo-random test sequence
- Desired fault coverage
- Patterns detect new faults
3. Low Power BIST - Vector Filtering Architecture

What are the necessary test patterns?

- Pseudo-random test sequence
 - Patterns detect new faults
 - Patterns don’t detect new faults

Desired fault coverage

Implementation

- Pattern counter and clock tree modification
3. Low Power BIST - Results

- When the both techniques are used
 - In the circuit
 - Lower power DfT
 - In the scan chain and in the clock tree
 - Vector filtering architecture

- Power consumption
 - Approximately 2 % of the original power are required

- Area overhead
 - Less than 10 % for large designs
Standard pseudo-random BIST approach

- Each circuit input can change at each clock cycle
 - High switching activity
 - and high power consumption
3. Low Power BIST - Test per-clock

- Low activity generator

- Only half of the circuit input can change at each clock cycle
 - Power consumption reduction is between 48% and 94%
 - Negligible cost in terms of area overhead

4. Functional BIST - Purpose

- Test problems linked to processor design
 - Standard BIST approaches
 - Pseudo-random pattern resistance
 - Area overhead
 - Performance degradation
 - Power consumption

- Generate tests with the help of the functionality
 - Functional BIST approach
 - Structural faults
 - No additional dedicated hardware
Processor application

- Test resources (TPG and SA) obtained by programming
- External tester
 - Configuration downloading
 - Response analysis
4. Functional BIST - Power Consumption

- **Design used**
 - The LEON processor
 - *Open sources*

- **Standard BIST scheme**
 - Additional test mode
 - Test data / Functional data

- **Functional BIST**
 - Tests applied in the standard operation mode
 - Functional instructions are used

⇒ Functional BIST approach should keep power consumption values in the range of the system’s specification
5. Conclusion

- Problems of recent VLSI circuits and systems
 - Test cost
 - BIST approaches
 - Power consumption in the test phase
 - High activity due to non-functional test data

- Low power BIST techniques
 - Test per-scan
 - Reduction by 98% obtained
 - Test per-clock
 - Reduction by 48% to 94% obtained
 - On going work
 - Functional BIST
5. Perspectives

- Implement a functional BIST approach for the LEON processor
 - Structural faults
 - Stuck-at faults, ...
 - Tests generation
 - Tests instructions ⇒ Instructions set
 - Tests data ⇒ Power constraints

- Power consumption comparisons
 - Functional BIST / Standard BIST techniques