[campus icon] Accesskey [ h ] University of Paderborn - Home
EN english
Die Universität der Informationsgesellschaft


Moving Object Detection for Non-stationary Camera

Bearbeiter:Thuy Nguyen
Themengebiet:Computer Vision

Moving object detection with video data is a fundamental task of computer vision and image processing, which now plays an important role in many video surveillance systems. The idea is to distinguish the foreground (non-static) from the background region (static) in each frame of a video stream. Various robust algorithms such as background subtraction, optical flow, statistical approaches and temporal differencing have been introduced to address the task. However, one unresolved issue is that the background can be mistakenly for a moving object due to the camera movement. Therefore, considered in this work, the focus is considered on detecting and tracking moving objects in videos captured by a non-stationary camera. Although there are several proposed algorithms competing each other today, a state-of-the-art algorithm in [YYK+ 13] MCD5.8ms is currently the fastest algorithm related to tracking moving objects. Unfortunately, there are two drawamount backs in MCD5.8ms that need to be addressed: the relatively high amount of false positives from incorrect motion estimation, and an exceeded sensitivity to the illumination changes. In order to overcome these two challenges, in this thesis, an algorithm based on the paper YLC17] (SCBU) is proposed. With the aim to boost up running time and reduce the amount number of false positives, a modification of SCBU is introduced. In addition, the implementation of SCBU will be compared with MCD5.8ms. By measuring the performance and analyzing the experimental results, it is possible to identify the advantages as well as the disadvantages of both algorithms. Moreover, potential approaches to address algorithm related issues would be elaborated on basis of these results.